
1

Yield

Dave Eckhardt
de0u@andrew.cmu.edu

2

Outline

� Project 2 Q&A
� Context switch

� Motivated by yield()

� This is a core idea of this class

3

Mysterious yield()

process1() {
 while (1)
 yield(P2);
}

process2() {
 while (1)
 yield(P1);
}

4

User-space Yield

� Consider pure user-space threads
� The opposite of Project 2

� What is a thread?
� A stack

� “Thread control block” (TCB)
� A set of registers
� Housekeeping information

5

Big Picture

Thread blocks

Thread stacks

Code, Data

6

Big Picture

Thread blocks

Thread stacks

Code, Data

%esp

%eax

%eip

CPU
State

42

7

Running the Other Thread

Thread blocks

Thread stacks

Code, Data

%esp

%eax

%eip

CPU
State

99

8

User-space Yield

� yield(user-thread-3)
� save my registers on stack

� /* magic happens here */
� restore thread 3's registers from thread 3's stack

� return /* to thread 3! */

9

Todo List

� General-purpose registers
� Stack pointer
� Program counter

10

No magic!

� yield(user-thread-3)
int localvar;
save registers on stack
tcb-> sp = &localvar;
tcb-> pc = &there;
tcb = findtcb(user-thread-3);
stackpointer = tcb->sp; /* asm(...) */
jump(tcb-> pc); /* asm(...) */
there:
restore registers from stack
return

11

The Program Counter

� What values can the PC (%esp) contain?
� Thread switch happens only in yield
� Yield sets saved PC to “restore registers”

� All non-running threads have the same saved PC

12

Remove Unnecessary Code

� yield(user-thread-3)
int localvar;
save registers on stack
tcb-> sp = &localvar;
tcb->///// pc// = &there;//////////
tcb = findtcb(user-thread-3);
stackpointer = tcb->sp; /* asm(...) */
jump(there); /* asm(...) */
there:
restore registers from stack
return

13

Remove Unnecessary Code

� yield(user-thread-3)
int localvar;
save registers on stack
tcb-> sp = &localvar;
tcb = findtcb(user-thread-3);
stackpointer = tcb->sp; /* asm(...) */
restore registers from stack
return

14

User Threads vs. Kernel Processes

� User threads
� Share memory

� Threads not protected from each other

� Processes
� Do not generally share memory

� P1 must not modify P2's saved registers

� Where are process save areas and control blocks?

15

Kernel Memory Picture

User stack

Kernel stacks

Process control blocks

User code

Kernel code

16

Yield steps

� P1 calls yield(P2)

� INT 50 ⇒ boom!

� Processor trap protocol
� Saves some registers on P1's kernel stack

� %eip, %cs, %eflags

� Assembly-language stub
� Saves more registers

� Starts C trap handler

17

Yield steps

� handle_yield()
� return(process_switch(P2))

� Assembly-language stub
� Restores registers from P1's kernel stack

� Processor return-from-trap protocol (aka IRET)
� Restores %eip, %cs, %eflags

� INT 50 instruction “completes”
� Back in user-space

� P1 yield() library routine returns

18

What happened to P2??

� process_switch(P2) “takes a while to return”
� When P1 calls it, it “returns to” P2

� When P2 calls it, it “returns to” P1 – eventually

19

Inside process_switch()

� ATOMICALLY

enqueue_tail(runqueue, cur_pcb);
cur_pcb = dequeue(runqueue, P2);
save registers (on P1's kernel stack)
Stackpointer = cur_pcb->sp;
restore registers /*from P2 k-stack*/
return

20

User vs. Kernel

� Kernel context switches aren't just yield()
� Message passing from P1 to P2

� P1 sleeping on disk I/O, so run P2

� CPU preemption by clock interrupt

21

Clock interrupts

� P1 doesn't “ask for” clock interrupt
� Clock handler forces P1 into kernel

� Like an “involuntary system call”
� Looks same way to debugger

� P1 doesn't say who to yield to
� Scheduler chooses next process

22

I/O completion

� P1 calls read()
� In kernel

� read() starts disk read

� read() calls condition_wait(&buffer);

� condition_wait() calls process_switch()

� process_switch() returns to P2

23

I/O Completion

� While P2 is running
� Disk completes read, interrupts P2 into kernel

� Interrupt handler calls condition_signal(&buffer);

� condition_signal() MAY call process_switch()
� P1, P2, P3... will “return” from process_switch()

24

Summary

� Similar steps for user space, kernel space
� Primary differences

� Kernel has open-ended competitive scheduler

� Kernel more interrupt-driven

� Implications for 412 projects
� P2: understand thread_create() stack setup

� P3: understand kernel context switch

