
1

Deadlock (1)

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� P2 – You should really have

� Made each syscall once

� Except maybe minclone()

� A detailed design for {thr,mutex,cond}_*()

� Readings (posted on course web)

� Deadlock: 7.4.3, 7.5.3, Chapter 8

� Scheduling: Chapter 6

� Memory: Chapter 9, Chapter 10

3

Outline

� Process resource graph

� What is deadlock?

� Deadlock prevention

� Next time

� Deadlock avoidance

� Deadlock recovery

4

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Request

5

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Allocation

6

Waiting

Tape 1

P1

Tape 2

P2

Tape 3

P3

7

Release

Tape 1

P1

Tape 2

P2

Tape 3

P3

8

Reallocation

Tape 1

P1

Tape 2

P2

Tape 3

P3

9

Multi-instance Resources

P1 P2 P3

Tapes Disks

10

Definition of Deadlock

� Deadlock

� Set of N processes

� Each waiting for an event

� ...which can be caused only by another waiting process

� Every process will wait forever

11

Deadlock Examples

� Simplest form

� Process 1 owns printer, wants tape drive

� Process 2 owns tape drive, wants printer

� Less-obvious

� Three tape drives

� Three processes

� Each has one tape drive

� Each wants “just” one more

� Can't blame anybody, but problem is still there

12

Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

13

Mutual Exclusion

� Resources aren't “thread-safe” (“reentrant”)

� Must be allocated to one process/thread at a time

� Can't be shared

� Programmable Interrupt Timer

� Can't have a different reload value for each process

14

Hold & Wait

� Process holds resources while waiting for more
mutex_lock(&m1);
mutex_lock(&m2);
mutex_lock(&m3);

� Typical locking behavior

15

No Preemption

� Can't force a process to give up a resource

� Interrupting a CD-R write creates a “ coaster”

� Obvious solution

� CD-R device driver forbids second open()

16

Circular Wait

� Process 0 needs something process 4 has

� Process 4 needs something process N has

� Process N needs something process M has

� Process M needs something process 0 has

17

Cycle in Resource Graph

Tape 2

P1

Tape 1

P2

Tape 3

P3

18

Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

� Each deadlock requires all four

19

Multi-Instance Cycle

P3P2P1

Tapes Disks

20

Multi-Instance Cycle (With Rescuer!)

P3P2P1

Tapes Disks

21

Cycle Broken

P3P2P1

Tapes Disks

22

Dining Philosophers

� The scene

� 410 staff at a Chinese restaurant

� A little short on utensils

23

Dining Philosophers

DETO

JE

JGBR

24

Dining Philosophers

� Processes

� 5, one per person

� Resources

� 5 bowls (dedicated to a diner: ignore)

� 5 chopsticks

� 1 between every adjacent pair of diners

� Contrived example?

� Illustrates contention, starvation, deadlock

25

Dining Philosophers – State

int stick[5] = { -1 }; /* owner */
condition avail[5]; /* now avail. */
mutex table = { available };

/* Right-handed convention */
right = diner;
left = (diner + 4) % 5;

26

start_eating(int diner)

mutex_lock(table);
while (stick[right] != -1)
 condition_wait(avail[right], table);
stick[right] = diner;
while (stick[left] != -1)
 condition_wait(avail[left], table);
stick[left] = diner;
mutex_unlock(table);

27

done_eating(int diner)

mutex_lock(table);
stick[left] = stick[right] = -1;
condition_signal(want[right]);
condition_signal(want[left]);
mutex_unlock(table);

28

Dining Philosophers Deadlock

� Everybody reaches clockwise...

� ...at the same time?

29

Reaching Right

DETO

JE

JGBR

30

Process graph

DETO

JE

JGBR

31

Deadlock!

DETO

JE

JGBR

32

Deadlock - What to do?

� Prevention

� Avoidance

� Detection/Recovery

� Just reboot when it gets “ too quiet”

33

Prevention

� Restrict behavior or resources

� Find a way to violate one of the 4 conditions

� To wit...?

� What we will talk about today

� 4 conditions, 4 possible ways

34

Avoidance

� Processes pre-declare usage patterns

� Dynamically examine requests

� Imagine what other processes could ask for

� Keep system in “ safe state”

35

Detection/Recovery

� Maybe deadlock won't happen today...

� ...Hmm, it seems quiet...

� ...Oops, here is a cycle...

� Abort some process

� Ouch!

36

Reboot When It Gets “ Too Quiet”

	 Which systems would be so simplistic?

37

Four Ways to Forgiveness

	 Each deadlock requires all four

 Mutual Exclusion

 Hold & Wait

 No Preemption

 Circular Wait

	 Prevention

 Pass a law against one (pick one)

 Deadlock only if somebody transgresses!

38

Outlaw Mutual Exclusion

	 Don't have single-user resources

 Require all resources to “ work in shared mode”

	 Problem

 Chopsticks???

 Many resources don't work that way

39

Outlaw Hold&Wait

	 Acquire resources all-or-none
start_eating(int diner)

mutex_lock(table);
while (1)
 if (stick[lt] == stick[rt] == -1)
 stick[lt] = stick[rt] = diner
 mutex_unlock(table)
 return;
 condition_wait(released, table);

40

Problem – Starvation

	 Larger resource set makes grabbing harder

 No guarantee a diner eats in bounded time

	 Low utilization

 Must allocate 2 chopsticks and waiter

 Nobody else can use waiter while you eat

41

Outlaw Non-preemption

	 Steal resources from sleeping processes!
start_eating(int diner)
right = diner; rright = (diner+1)%5;
mutex_lock(table);
while (1)
 if (stick[right] == -1)
 stick[right] = diner
 else if (stick[rright] != rright)
 /* right can't be eating: take! */
 stick[right] = diner;
...same for left...
mutex_unlock(table);

42

Problem

	 Some resources cannot be cleanly preempted

 CD burner

43

Outlaw Circular Wait

	 Impose total order on all resources

	 Require acquisition in strictly increasing order

 Static: allocate memory, then files

 Dynamic: ooops, need resource 0; drop all, start over

44

Assigning a Total Order

� Lock order: 4, 3, 2, 1, 0: right, then left

 Issue: (diner == 0) ⇒ (left == 4)

 would lock(0), lock(4): left, then right!
if diner == 0
 right = (diner + 4) % 5;
 left = diner;
else
 right = diner;
 left = (diner + 4) % 5;
...

45

Problem

� May not be possible to force allocation order

� Some trains go east, some go west

46

Deadlock Prevention problems

� Typical resources require mutual exclusion

� Allocation restrictions can be painful

� All-at-once

 Hurts efficiency

 May starve

� Resource needs may be unpredictable

� Preemption may be impossible

� Or may lead to starvation

� Ordering restrictions may not be feasible

47

Deadlock Prevention

� Pass a law against one of the four ingredients

� Great if you can find a tolerable approach

� Very tempting to just let processes try their luck

48

Next Time

� Deadlock Avoidance

� Deadlock Recovery

