
Memory Management

Dave Eckhardt
de0u@andrew.cmu.edu

Synchronization

� “Pop Quiz”

� What does “ld” do?

� Outline

� ~ Chapter 9 (with occasional disagreement)

� Section 9.6 is particularly useful for P3

� Also read Chapter 10

Who emits addresses?

� Program counter (%cs:%eip): code area

� Straight-line code

� Loops, conditionals

� Procedure calls

� Stack pointer (%ss:%esp, %ss:%ebp): stack area

� Registers: data/bss/heap

� %ds:%eax

� %es:%esi

Initialized how?

� Program counter

� Set to “ entry point” by OS program loader

� Stack pointer

� Set to “ top of stack” by OS program loader

� Registers

� Code segment (“ immediate” constants)

� Data/BSS/heap

� Computed from other values

Birth of an Address

int k = 3;
int foo(void) {
 return (k);
}

int a = 0;
int b = 12;
int bar (void) {
 return (a + b);
}

...
ret
leave
movl _k,%eaxcode 0

12
 3data 4096

0bss 8192

Image File vs. Memory Image

...
ret
leave
movl _k,%eaxcode 0

12
 3data 4096

0bss 8192

...
ret
leave
movl _k,%eaxcode 0

12
 3data 4096

header

Executable File Header

� Defines how image file gets loaded into memory

� Sections

� Type

� Memory address

� Common flavors

� ELF – Executable and Linking Format (Linux)

� DWARF - Debugging With Attribute Record Format

� Mach-O – Mach Object (MacOS 10)

� a.out - assembler output (primeval Unix format)

a.out File Header

� Key fields

� File type (“ magic”)

� Text size

� Data size

� BSS size

� Entry point

� Implicit, system-dependent: base address of text

� NetBSD/i386: 0x1000 aka 4096

Other Executable File Contents

� Symbol table

� Maps _main ⇒ 0x1038

� Debugging information

� Maps 0x1038 ⇒ (file = test.c, line = 10)

� Relocation information

� (below)

� Not necessary to run program

� Removed via “ strip” command

Multi-file Programs?

� “ Link editor” combines into one image file

� Unix “ link editor” called “ ld”

� Two jobs

� Re-allocate each file's address space

� Fill in references to symbols in other files

Every .o uses same address space

code

data

bss

code

data

bss

Combining .o's Changes Addresses

code

data

bss

code

data

bss

Linker uses relocation information

� Field

� address, bit field size

� Field type

� relative, absolute

� Field reference

� symbol name

� Example

� bytes 1024..1027 = absolute address of _main

Static Linking

� Must link a program before running

� User program

� Necessary library routines

� Duplication on disk

� Every program uses printf()!

� Duplication in memory

� Hard to patch every printf() if there's a bug

Dynamic Linking

� Defer “ final link” as much as possible

� The instant before execution

� Program startup invokes “ shared object loader”

� Locates library files

� Adds into address space

� Links, often incrementally

� Self-modifying “ stub” routines

“ Shared libraries”

� Extension/optimization of dynamic linking

� Basic idea

� Why have N copies of printf() in memory?

� Allow processes to share memory pages

� “ Intelligent” mmap()

� Must avoid address-map conflicts

� Can issue each library an address range

� Can build libraries from position-independent code

Swapping

� Multiple user processes

� Sum of memory demands exceeds system memory

� Don't want say “ no” too early

� Allow each process 100% of system memory

� Take turns

� Temporarily evict process(es) to disk

� Not runnable

� Blocked on implicit I/O request (e.g., “ swaprd”)

Swapping vs. CPU Scheduling

� Textbook claims

� Dispatcher notices swapped-out process

� Just before resuming execution!

� Implication: huge stalls

� Common: two-level scheduling process

� CPU scheduler schedules in-core processes

� Swapper decides when to evict/reinstate

� [Cannot swap a process with pending DMA]

Contiguous Memory Allocation

� Goal: share system
memory among
processes

� Approach: concatenate
in memory

Process 3

Process 4

Process 1

OS Kernel

Process 2

Logical vs. Physical Addresses

� Logical address

� According to programmer, compiler, linker

� Physical address

� Where your program ends up in memory

� They can't all be loaded at 0x1000!

� How to reconcile?

� Use linker to relocate “ one last time” ? - very slow

� Use hardware!

Contiguous Memory Allocation

� Goal: share system
memory among
processes

� Approach: concatenate
in memory

� Need two new CPU
control registers

� Memory base

� Memory limit

Process 3

Process 4

Process 1

OS Kernel

Process 2

Mapping & Protecting Regions

� Program uses logical
addresses 0..8192

� Memory Management
Unit (MMU) maps to
physical addresses
If L < limit
 P = base + L;
Else
 ERROR

Process 3

Process 4

Process 1

OS Kernel

0

8192

1100
9292

Allocating Regions

� Swapping out creates
“ holes”

� Swapping in creates
smaller holes

� Various policies

� First fit

� Best fit

� Worst fit

Process 3

Process 4

Process 1

OS Kernel

Process 2

Fragmentation

� External fragmentation

� Scattered holes can't
be combined

	 Without costly
“ compaction” step

� Some memory is
unusable

Process 4

Process 1

OS Kernel

Process 2

Fragmentation

� Internal fragmentation

� Allocators often round
up

	 8K boundary (some
power of 2!)

� Some memory is
wasted inside each
segment

Process 3

Process 4

Process 1

OS Kernel

0

8192

1100
9292

Paging

� Solve two problems

� External memory fragmentation

� Long delay to swap a whole process

� Divide memory more finely

� Page = small logical memory region (4K)

� Frame = small physical memory region

� [I will get this wrong, feel free to correct me]

� Any page can map to any frame

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame Offset

Page table
Physical Address

Paging – Address Mapping

 User view

� Memory is a linear array

 OS view

� Each process requires N frames

 Fragmentation?

� Zero external fragmentation

� Internal fragmentation: maybe average ½ page

Bookkeeping

 One page table for each process

 One frame table

� Manage free pages

� Remember who owns a page

 Context switch

� Must “ activate” process's page table

	 Simple on x86, still slow

Hardware Techniques

 Small number of pages?

� “ Page table” can be a few registers

 Typical case

� Large page tables, live in memory

	 Where? Processor has “ Page Table Base Register”

Double trouble?

 Program requests memory access

 Processor makes two memory accesses!

� Split address into page number, intra-page offset

� Add to page table base register

� Fetch page table entry (PTE) from memory

� Add frame address, intra-page offset

� Fetch data from memory

Translation Lookaside Buffer (TLB)

 Problem

� Cannot afford double memory latency

 Observation - “ locality of reference”

� Program accesses “ nearby” memory

 Solution

� Cache virtual-to-physical mappings

� Small, fast on-chip memory

� Don't forget context switch!

Page Table Entry (PTE) mechanics

 PTE flags

� Protection

� Read/Write/Execute bits

� Valid bit

� Dirty bit

 Page Table Length Register (PTLR)

� Programs don't use entire virtual space

� On-chip register detects out-of-bounds reference

� Allows small PTs for small processes

Page Table Structure

 Problem

� Assume 4 KByte pages, 4 Byte PTEs

� Ratio: 1000:1

� 4 GByte virtual address (32 bits) -> 4 MByte page table

� For each process!

 Solutions

� Multi-level page table

� Hashed page table

� Inverted page table

Multi-level page table

P1 Offset

....
f29
f34
f25

Frame Offset

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

Multi-level page table

P1 Offset

....
f29
f34
f25

Frame Offset

Page
Tables

....
f99
f87
....

P2

Hashing & Clustering

 Hashed Page Table

� PT is “ just” a hash table

� Bucket chain entries: virtual page #, frame #, next-pointer

� Useful for sparse PTs (64-bit addresses)

 Clustering

� Hash table entry is a miniature PT

� e.g., 16 PTEs

� Entry can map 1..16 (aligned) pages

Inverted page table

 Problem

� Page table size depends on virtual address space

� N processes * large fixed size

 Observation

� Physical memory (# frames) is a boot-time constant

� No matter how many processes!

 Approach

� One PTE per frame, maps (process #, page#) to index

Inverted Page Table

Logical Address

Page Offset

....
#1 p29
#3 p34
....

Frame i Offset

Hash table Physical AddressPid #

Hash

Segmentation

 Physical memory is (mostly) linear

 Is virtual memory linear?

� Typically a set of regions

� “ Module” = code region + data region

� Region per stack

� Heap region

 Why do regions matter?

� Natural protection boundary

� Natural sharing boundary

Segmentation: Mapping

Seg # Offset

<=

Physical Address
Limit Base

+

Segmentation + Paging

 80386 (does it all!)

� Processor address directed to one of six segments

� CS: Code Segment, DS: Data Segment

� CS register holds 16-bit selector

� 32-bit offset within a segment -- CS:EIP

� Table maps selector to segment descriptor

� Offset fed to segment descriptor, generates linear
address

� Linear address fed through segment's page table

� 2-level, of course

Is there another way?

 Could we have no page tables?

 How would hardware map virtual to physical?

Software TLBs

 Reasoning

� We need a TLB for performance reasons

� OS defines each process's memory structure

� Which memory ranges, permissions

� Why impose a semantic middle-man?

 Approach

� TLB miss generates special trap

� OS quickly fills in correct v->p mapping

Software TLB features

 Mapping entries can be computed many ways

� Imagine a system with one process memory size

� TLB miss becomes a matter of arithmetic

� Mapping entries can be locked in TLB

� Great for real-time systems

� Further reading

� http://yarchive.net/comp/software_tlb.html

Summary

� Processes emit virtual addresses

� segment-based or linear

� A magic process maps virtual to physical

� No, it's not magic

� Address validity verified

� Permissions checked

� Mapping may fail temporarily (trap handler)

� Mapping results cached in TLB

