
Virtual Memory

Dave Eckhardt
de0u@andrew.cmu.edu

Synchronization

� P2 hand-in

� Web page will appear

� Same basic idea as last time

� Will try to make it simpler

� Extra office hours (see bboard)

� Upcoming

� P3 out: Friday (checkpoint upcoming)

� HW1; exam

Outline

� Previously

� Hardware used for paged memory

� What virtual memory can do for me

� What's under the hood

Virtual Memory: Motivations

� Previously

� Avoid fragmentation issues of contiguous segments

� Avoid “final relocation”

� Enable “partial swapping”

� Share memory regions, files efficiently

� Big speed hack for fork()

Partial Memory Residence

� Error-handling code not used in every run

� Tables may be allocated larger than used

� Can run very large programs

� Much larger than physical memory

� As long as “ active” footprint fits in RAM

� Swapping can't do this

� Programs can launch faster

� Needn't load whole thing

Demand Paging

� RAM frames form a cache for the set of all pages

� Page tables indicate which pages are resident

� “ valid” bit in page table entry (PTE)

� otherwise, page fault

Page fault - Why?

� Address is invalid/illegal

� Raise exception

� Process is growing stack

� “ Cache misses”

� Page never used

� Fetch from executable file

� Page “ swapped” to disk

� Bring it back in!

Page fault story - 1

� Process issues memory reference

� TLB: miss

� PT: invalid

� Trap to OS kernel!

� Save registers

� Load new registers

� Switch to kernel's page table

� Run trap handler

Page fault story – 2

� Classify fault address: legal/illegal

� Code/data region of executable?

� simulate read() into a blank frame

� Heap/modified-data/stack?

� “ somewhere on the paging partition”

� schedule disk read into blank frame

� Growing stack?

� Allocate a zero frame, insert into PT

Page fault story – 3

� Put process to sleep (probably)

� Switch to running another

� Complete I/O, schedule process

� Handle I/O-complete interrupt

� mark process runnable

� Restore registers, switch page table

� Faulting instruction re-started transparently

� Single instruction may fault more than once!

Demand Paging Performance

� Effective access time of memory word

� (1 – p
miss

) * Tmemory + p
miss

 * Tdisk

� Textbook example

� Tmemory 100 ns

� Tdisk 25 ms

� p
miss

 = 1/1,000 slows down by factor of 250

� slowdown of 10% needs p
miss

 < 1/2,500,000

Copy-on-Write

� fork() produces two very-similar processes

� Same code, data, stack

� Expensive to copy pages

� Many will never be modified by new process

� Especially in fork(), exec() case

� Share instead of copy?

� Easy: code pages – read-only

� Dangerous: stack pages!

Copy-on-Write

� Simulated copy

� Copy page table entries to new process

� Mark PTEs read-only in old & new

� Done! (saving factor: 1024)

� Making it real

� Process writes to page (oops!)

� Page fault handler responsible

� Copy page into empty frame

� Mark read-write in both PTEs

Example Page Table

Virtual Address
stack

code

data

Page table

f029VRW
f237VRX

f981VRW
f000---

Copy-on-Write of Address Space

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW
f000---

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW
f000---

Forking a Stack Page

stack

code

data
f029VRWWWWWWWWW
f237VRX

f980VRW
f000---

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRW
f000---

stack

Zero pages

� Very special case of copy-on-write

� Many process pages are “ blank”

� All of bss

� New heap pages

� New stack pages

� Have one system-wide all-zero page

� Everybody points to it

� Cloned as needed

Memory-Mapped Files

� Alternative interface to read(),write()

� mmap(addr, len, prot, flags, fd, offset)

� new memory region presents file contents

� write-back policy typically unspecified

� Benefits

� Avoid serializing pointer-based data structures

� Reads and writes may be much cheaper

� Look, Ma, no syscalls!

Memory-Mapped Files

� Implementation

� Memory region remembers mmap() parameters

� Page faults trigger read() calls

� Pages evicted via write() to file

� Shared memory

� Two processes mmap() “ the same way”

� Point to same memory region

Memory Regions vs. Page Tables

� What's a poor page fault handler to do?

� Kill process?

� Copy page, mark read-write?

� Fetch page from file? Which? Where?

� Page Table not a good data structure

� Format defined by hardware

� Per-page nature is repetitive

� Not enough bits to encode OS metadata

Dual-view Memory Model

� Logical

� Process memory is a list of regions

� “ Holes” between regions are illegal addresses

� Per-region methods

� fault(), evict(), unmap()

� Physical

� Process memory is a list of pages

� Many “ invalid” pages can be made valid

� Faults delegated to per-region methods

Page-fault story (for real)

� Examine fault address

� Look up: address ⇒ region

� region->fault(addr, access_mode)

� Quickly fix up problem

� Or put process to sleep, run scheduler

Page Replacement – When

� Process always want more memory frames

� Explicit deallocation is rare

� Page faults are implicit allocations

� System inevitably runs out

� Solution

� Pick a frame, store contents to disk

� Transfer ownership to new process

� Service fault using this frame

Pick a Frame

� Two-level approach

� Determine # frames each process “ deserves”

� Process chooses which frame is least-valuable

� System-wide approach

� Determine globally-least-useful frame

Store Contents to Disk

� Where does it belong?

� Allocate backing store for each page

� What if we run out?

� Must we really store it?

� Read-only code/data: no!

� Can re-fetch from executable

� Saves space, may be slower

� Not modified since last page-in: no!

� Hardware may provide “ page-dirty” bit

FIFO Page Replacement

� Concept

� Page queue

� Page added to queue when created/faulted in

� Always evict oldest page

� Evaluation

� Cheap

� Stupid

� May evict old unused startup-code page

� But guaranteed to evict process's favorite page too!

Optimal Page Replacement

� Concept

� Evict whichever page will be referenced latest

� Buy the most time until next page fault

	 Evaluation

 Impossible to implement

	 So?

 Used as upper bound in simulation studies

LRU Page Replacement

	 Concept

 Evict least-recently-used page

 “ Past performance may not predict future results”

	 Evaluation

 Would work well

 LRU is computable without fortune teller

 Bookkeeping very expensive

� Hardware must sequence-number every page reference!

Approximating LRU

	 Hybrid hardware/software approach

 1 reference bit per page table entry

 OS sets reference = 0 for all pages

 Hardware sets reference=1 when PTE is used

 OS periodically scans for active pages

	 Second-chance algorithm

 FIFO chooses victim page

� Skip victims with reference == 1

Clock Algorithm

static int nextpage = 0;
boolean reference[NPAGES];
int choose_victim() {
 while (reference[nextpage])
 reference[nextpage] = false;
 nextpage = (nextpage+1) % NPAGES;
 return(nextpage);

Page Buffering

	 Maintain a pool of blank pages

 Page fault handler can be fast

 Disk write can happen in background

	 “ page-out daemon”

 Scan system for dirty pages

� Write to disk

� Clear dirty bit

� Page can be instantly evicted later

“ Reclaim” fault

	 DEC VAX-11/780 had no reference bit

 What to page out?

	 Approach

 Remove pages from PT's according to FIFO

� Dirty pages queued to disk, then marked clean

 Add clean pages to FIFO free-page list

 Page fault can “ re-claim” page from free-page list

� “ Yes, I was using that page”

Frame Allocation

	 How many frames should a process have?

	 Minimum

 Examine worst-case instruction

� Can multi-byte instruction cross page boundary?

� Can memory parameter cross page boundary?

� How many memory parameters?

� Indirect pointers?

Frame Allocation

	 Equal

 Every process gets same # frames

� “ Fair”

� Probably wasteful

� Proportional

 Larger processes get more frames

� Probably the right approach

� Encourages greediness

Thrashing

� Problem

 Process needs N pages

 OS provides N-1, N/2, etc.

� Result

 Every page OS evicts generates “ immediate” fault

 More time spent paging than executing

 Denial of “ paging service” to other processes

Working-Set Model

� Approach

 Determine necessary # pages

 If unavailable, start swapping

� How to measure?

 Periodically scan process reference bits

 Combine multiple scans (see text)

� Evaluation

 Expensive

Page-Fault Frequency

� Approach

 Thrashing == “ excessive” paging

 Adjust each frame quotas to balance fault rates

� Fault rate “ too low” : reduce quota

� Fault rate “ too high” : increase quota

� What if quota increase doesn't help?

 Start swapping

Program optimizations

� Locality depends on data structures

 Arrays encourage sequential accesss

 Random pointer data structures scatter references

� Compiler & linker can help

 Don't split a routine across two pages

 Place helper functions on same page as main routine

� Effects can be dramatic

Summary

� Process address space

 Logical: list of regions

 Hardware: list of pages

� Fault handler is complicated

 Page-in, copy-on-write, zero-fill, ...

� Understand definition & use of

 Dirty bit

 Reference bit

