
#include

Dave Eckhardt
de0u@andrew.cmu.edu

Synchronization

10/10/03 Friday Checkpoint 1 due
10/13/03 Monday HW1 due
10/15/03 Wednesday Mid-term exam (pending)
10/17/03 Friday Mid-semester break
10/20/03 Monday Mid-term grades due

Outline

� #ifndef DSFLK_FSFDDS_FSDFDS

� What should go here, anyway?

What's _STDIO_H_ anyway?

#ifndef _STDIO_H_
#define _STDIO_H_

typedef struct FILE {
 ...
} ...;

#endif /* _STDIO_H_ */

Archaeology

� C is old

� C doesn't have modules

� C has files

� Compilers sort of know some file types: .c, .s

� Compilers don't really know about .h

� Auxiliary “pre-processor” brain hides them

� People use conventions to get module-like C

� These conventions evolved slowly

The “.h Responsibility” Dilemma

� Assume: “stdio module”

� Assume: “network stack module”

� (Trust us, it's modular!)

� Both need to know

� What's a size_t on this machine, anyway?

� #include <sys/types.h>

Nested Responsibility

� Program 1:

� #include <stdio.h>

� Program 2:

� #include <netinet/tcp_var.h>

� Assume

� Program 1, 2 don't need sys/types.h themselves

� Solution 1

� stdio.h and netinet/tcp_var.h each include sys/types.h

Too Much

� Program 3:

� #include <stdio.h>

� #include <netinet/tcp_var.h>

� Problem

� Now we get two copies sys/types.h

� Lots of whining about redefinitions

� Maybe compilation fails

Passing the Buck

� Blame the user!

� Solution 2

� Require main program to #include <sys/types.h>

� Problem

� Annoying for user

� Modules' needs change over time

� Didn't you know? Since last night xxx needs yyy...

Solution: Idempotent .h files

� .h responsibility

� Activate only once

� No matter how many times included

� Choose string “ unlikely to be used elsewhere”
#ifndef _STDIO_H_
#define _STDIO_H_
...
#endif /* _STDIO_H_ */

What Belongs In a .h?

� Types

� Exported interface routines (“ public methods”)

� Constants

� Macros (when appropriate)

� Data items exported by module

� Try to avoid this

� Same reason as other languages: data != semantics

� No code!

But What About...?

� Real modules have multiple .c files

� Who declares internal data structures?

� (Internally, we agree on semantics)

� Who declares internal functions?

� Not “ the” .h file

� We don't want to publish internal details

� Maybe a “ .i” file?

� Help?

Use the Other .h File!

� stdio.h

� Included by module clients

� Included by module parts

� stdio_private.h

� Included only by module parts

� Ideally, not available to user's prying eyes

� *_private.h should be idempotent, too

Summary

� #ifndef DSFLK_FSFDDS_FSDFDS

� Well, use a better string

� Used to make .h files idempotent

� What should go here, anyway?

� There are two “ here” 's here

� foo.h: public interface, available to public

� foo_private.h: internal communication, maybe unpublished

