
Scheduling

Dave Eckhardt
de0u@andrew.cmu.edu

Outline

� Chapter 6: Scheduling

CPU-I/O Cycle

� Process view: 2 states

� Running

� Waiting for I/O

� Life Cycle

� I/O (load), CPU, I/O, CPU, .., CPU (exit)

CPU Burst Lengths

� Overall

� Exponential fall-off in CPU burst length

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

CPU Burst Lengths

� CPU-bound

� Batch job

� Long CPU bursts

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

CPU Burst Lengths

� I/O-bound

� Copy, Data acquisition, ...

� Tiny CPU bursts

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Preemptive?

� Four opportunities to schedule

� Running process waits (I/O, child, ...)

� Running process exits

� Waiting process becomes runnable (I/O done)

� Other interrupt (clock, page fault)

� Multitasking types

� Fully Preemptive: All four cause scheduling

� “Cooperative”: only first two

CPU Scheduler

� Invoked when CPU becomes idle

� Current task blocks

� Clock interrupt

� Select next task

� Quickly

� PCB's in: FIFO, priority queue, tree

� Switch (using “Dispatcher”)

Dispatcher

� Set down running task

� Save register state

� Update CPU usage information

� Store PCB in “run queue”

� Pick up designated task

� Activate new task's memory

� Protection, mapping

� Restore register state

� Transfer to user mode

Scheduling Criteria

� Maximize/trade off

� CPU utilization (“busy-ness”)

� Throughput (“jobs per second”)

� Process view

� Turnaround time (everything)

� Waiting time (runnable but not running)

� User view

� Response time (input/output latency)

Algorithms

� Don't try these at home

� FCFS

� SJF

� Priority

� Reasonable

� Round-Robin

� Multi-level (plus feedback)

� Multiprocessor, real-time

FCFS- First Come, First Served

� Basic idea

� Run task until relinquishes CPU

� When runnable, place at end of FIFO queue

� Waiting time very dependent on mix

� “ Convoy effect”

� N tasks each make 1 I/O request, stall

� 1 tasks executes very long CPU burst

� Lather, rinse, repeat

SJF- Shortest Job First

� Basic idea

� Choose task with shortest next CPU burst

� Provably “ optimal”

� Minimizes average waiting time across tasks

� Practically impossible (oh, well)

� Could predict next burst length...

� Text presents exponential average

� Does not present evaluation (Why not? Hmm...)

Priority

� Basic idea

� Choose “ most important” waiting task

� Does “ high priority” mean p=0 or p=255?

� Priority assignment

� Static: fixed property (engineered?)

� Dynamic: function of task behavior

� Big problem: Starvation

� Possible hack: aging

Round-Robin

� Basic idea

� Run each task for a fixed “ time quantum”

� When quantum expires, append to FIFO queue

� “ Fair”

� But not “ provably optimal”

� Choosing quantum length

� Infinite = FCFS, Infinitesimal = “ Processor sharing”

� Balance “ fairness” vs. context-switch costs

True “ Processor Sharing”

� CDC Peripheral
Processors

� Memory latency

� Long, predictable

� Every instruction

� Solution: round robin

� Quantum = 1 instruction

� ~ Intel “ superthreading”

Memory

Processor Core

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

Multi-level Queue

� N independent process queues

� One per priority

� Algorithm per-queue

Priority 0 P1 P7

Priority 1 P2 P9 P3

Batch P0 P4

R. Robin

R. Robin

FCFS

Multi-level Queue

� Inter-queue scheduling

� Strict priority

� Pri 0 runs before Pri 1, Pri 1 runs before batch – every time

� Time slicing (e.g., weighted round-robin)

� Pri 0 gets 2 slices

� Pri 1 gets 1 slice

� Batch gets 1 slice

Multi-level Feedback Queue

� N queues, different quanta

� Exhaust your quantum?

� Demoted to slower queue

� Longer quantum

� Lower priority

� Can you be promoted back up?

� Maybe I/O promotes you

� Maybe you “ age” upward

� Popular “ time-sharing” scheduler

Multiprocessor Scheduling

� Common assumptions

� Homogeneous processors (same speed)

� Uniform memory access (UMA)

� Load sharing / Load balancing

� Single global ready queue – no false idleness

� Processor Affinity

� Some processor may be more desirable or necessary

	 Special I/O device

	 Fast thread switch

Multiprocessor Scheduling - “ SMP”

� Asymmetric multiprocessing

� One processor is “ special”

� Executes all kernel-mode instructions

� Schedules other processors

� “ Special” aka “ bottleneck”

� Symmetric multiprocessing - “ SMP”

� “ Gold standard”

� Tricky

Real-time Scheduling

� Hard real-time

� System must always meet performance goals

� Or it's broken (think: avionics)

� Designers must describe task requirements

� Worst-case execution time of instruction sequences

� “ Prove” system response time

� Argument or automatic verifier

� Cannot use indeterminate-time technologies

� Disks!

Real-time Scheduling

� Soft real-time

� “ Occasional” deadline failures tolerable

� CNN video clip on PC

� DVD playback on PC

� Much cheaper than hard real-time

� Real-time extension to timesharing OS

	 POSIX real-time extensions for Unix

� Can estimate (vs. prove) task needs

� Priority scheduler

� Preemptible OS

Scheduler Evaluation Approaches

� “ Deterministic modeling”

� aka “ hand execution”

� Queueing theory

� Math gets big fast

� Math sensitive to assumptions

	 May be unrealistic (aka “ wrong”)

� Simulation

� Workload model or trace-driven

� GIGO hazard (either way)

Summary

� Round-robin is ok for simple cases

� Certainly 80% of the conceptual weight

� Certainly good enough for P3

 “ Real” systems

� Some multi-level feedback

� Probably some soft real-time

