Bootstrapping

Steve Muckle
Dave Eckhardt




Synchronization

*

Project 3 checkpoint 1
Bboard post, web page
Paging, COW optional

“No linked lists” - not what | said (I think)
Homework 1: Monday 17:00

Exam: Tuesday evening (19:00)
Known conflicts will receive e-mail from me

Monday: Review

2

2

*

*

Carnegie Mellon University 2



Motivation

« What happens when you turn on your PC?
« How do we get to main() in kernel.c?

Carnegie Mellon University 3



Overview

+ Requirements of Booting

« Ground Zero
The BIOS
The Boot Loader

2

*

*

Our projects: Multiboot, OSKit

Carnegie Mellon University




Requirements of Booting

*

2

2

*

Initialize machine to a known state
Make sure basic hardware works
Load a real operating system

Run the real operating system

Carnegie Mellon University




Ground Zero

+ You turn on the machine

« Execution begins in real mode at a specific
memory address
Real mode: only 1mb of memory is addressable
Start address is in an area mapped to BIOS (r/0)

+ What's the BIOS?

Carnegie Mellon University 6



Basic Input/Output System
(BIOS)

« Code stored in mostly-read-only memory
Flash, previously EEPROM

« Configures hardware details
RAM refresh rate or bus speed
Password protection
Boot-device order

« Loads OS, acts as mini-OS
« Scary things (power management)

Carnegie Mellon University 7



BIOS POST

« Power On Self Test (POST)

+ Scan for critical resources

RAM
Test it (only a little!)

Graphics card
Keyboard

« Missing something?
Beep

Carnegie Mellon University




BIOS Boot-Device Search

« Consult settings for selected order
“A: C: G.” (maybe PXE)

« Load the first sector from a boot device
- could be a floppy, hard disk, CDROM
- without a BIOS, we’d be in a bit of a jam

« If the last two bytes are AA55, we're set

+ Otherwise look somewhere else
“No Operating System Present”

Carnegie Mellon University 9



BIOS Boot-Sector Launch

« Sector Is copied to 0x7CO00
+ Execution Is transferred to Ox7C00

« If it's a hard disk or CDROM, there’s an extra
step or two (end result Iis the same)

« Now we’re executing the bootloader — the
first “software” to execute on the PC

Carnegie Mellon University 10



Bootloader

*

2

We’'re now executing a bootloader

Some bootloaders exist to load one OS
Others give you a choice of which to load
We use grub

Carnegie Mellon University

11



Bootloader's Job

*

Mission: load operating system

But where?
May need to understand a file system
Directories, inodes, symbolic links!

May need to understand multiple file systems
Single disk may contain more than one

Layout defined by “partition label”
...and “extended partition label”

« Recall: Boot loader is 510 bytes of code!

2

Carnegie Mellon University 12



Multi-Stage Boot Loader

*

2

*

2

GRUB is larger than one sector

Sector loaded in by the BIOS just...
...loads the rest of the boot loader

GRUB then presents boot menu

OS load challenge
BIOS runs in real mode — only 1 meg of RAM!
OS may be larger than 1 meg

Carnegie Mellon University 13



Brain-switching

+ Switch back and forth between real and
protected mode

Real mode: BIOS works, can operate disk
Protected mode: can access lots of memory

« Switching code Is tricky
Somewhat like OS process context switch

« Done: jump to the kernel’s entry point
- How do we know the kernel’s entrypoint?

Carnegie Mellon University 14



Multiboot Specification

« Multiboot “standard”
Kernel specifies entry point &c

+ The multiboot header
must be located In the
first 8192 bytes

« This Is the mysterious
multiboot.o...

Carnegie Mellon University

Many OSes require their own bootloader

Ox1badb002

flags

checksum

Header_addr

load_addr

load _end_addr

bss end_addr

entry_addr

15



410 “Pebbles” (from Oskit)

« Entry point is asm function in multiboot.o
« This calls the first C function, multiboot._main

Carnegie Mellon University 16



OSkit

« multiboot_main calls:
pase cpu_setup: init GDT, IDT, and TSS

pase _mu

pase_mu

parse cmea

tiboot_init. mem: init LMM
tiboot_init_cmdline
line passed to kernel by bootloader

« - main (yes, your main in kernel.c!)
- exit, If main ever returns

press a key to reboot...

Carnegie Mellon University 17



Other Universes

« OpenFirmware
Sun & Mac hardware
Goal: share devices across processor families
Solution: FORTH boot-loader code in each device

« “Big Iron” (mainframes)
“Boot loader” may be a separate machine
Run thorough diagnostics on main machine
Debugger support for crashes

Carnegie Mellon University 18



Summary

+ It's a long, strange trip

Power on: maybe no RAM, maybe no CPU!!
Maybe beep, maybe draw a sad face

Locate OS

Load N stages

Tell kernel about the machine and the boot params
Provide support to kernel once it's running

Carnegie Mellon University 19



