
Bootstrapping

Steve Muckle

Dave Eckhardt



Carnegie Mellon University 2

Synchronization

� Project 3 checkpoint 1
� Bboard post, web page
� Paging, COW optional

� “No linked lists” - not what I said (I think)
� Homework 1: Monday 17:00
� Exam: Tuesday evening (19:00)

� Known conflicts will receive e-mail from me
� Monday: Review



Carnegie Mellon University 3

Motivation

� What happens when you turn on your PC?
� How do we get to main() in kernel.c?



Carnegie Mellon University 4

Overview

� Requirements of Booting
� Ground Zero
� The BIOS
� The Boot Loader
� Our projects: Multiboot, OSKit



Carnegie Mellon University 5

Requirements of Booting

� Initialize machine to a known state
� Make sure basic hardware works
� Load a real operating system
� Run the real operating system



Carnegie Mellon University 6

Ground Zero

� You turn on the machine
� Execution begins in real mode at a specific 

memory address
� Real mode: only 1mb of memory is addressable
� Start address is in an area mapped to BIOS (r/o)

� What’s the BIOS?



Carnegie Mellon University 7

Basic Input/Output System 
(BIOS)

� Code stored in mostly-read-only memory
� Flash, previously EEPROM

� Configures hardware details
� RAM refresh rate or bus speed
� Password protection
� Boot-device order

� Loads OS, acts as mini-OS
� Scary things (power management)



Carnegie Mellon University 8

BIOS POST

� Power On Self Test (POST)
� Scan for critical resources

� RAM
� Test it (only a little!)

� Graphics card
� Keyboard

� Missing something?
� Beep



Carnegie Mellon University 9

BIOS Boot-Device Search

� Consult settings for selected order
� “A: C: G:” (maybe PXE)

� Load the first sector from a boot device
- could be a floppy, hard disk, CDROM
- without a BIOS, we’d be in a bit of a jam

� If the last two bytes are AA55, we’re set
� Otherwise look somewhere else

� “No Operating System Present”



Carnegie Mellon University 10

BIOS Boot-Sector Launch

� Sector is copied to 0x7C00
� Execution is transferred to 0x7C00
� If it’s a hard disk or CDROM, there’s an extra 

step or two (end result is the same)
� Now we’re executing the bootloader – the 

first “software” to execute on the PC



Carnegie Mellon University 11

Bootloader

� We’re now executing a bootloader
� Some bootloaders exist to load one OS
� Others give you a choice of which to load
� We use grub

http://www.gnu.org/software/grub/



Carnegie Mellon University 12

Bootloader's Job

� Mission: load operating system
� But where?

� May need to understand a file system
� Directories, inodes, symbolic links!

� May need to understand multiple file systems
� Single disk may contain more than one
� Layout defined by “partition label”

� ...and “extended partition label”

� Recall: Boot loader is 510 bytes of code!



Carnegie Mellon University 13

Multi-Stage Boot Loader

� GRUB is larger than one sector
� Sector loaded in by the BIOS just…

� ...loads the rest of the boot loader
� GRUB then presents boot menu
� OS load challenge

� BIOS runs in real mode – only 1 meg of RAM!
� OS may be larger than 1 meg



Carnegie Mellon University 14

Brain-switching

� Switch back and forth between real and 
protected mode
� Real mode: BIOS works, can operate disk
� Protected mode: can access lots of memory

� Switching code is tricky
� Somewhat like OS process context switch

� Done: jump to the kernel’s entry point
- How do we know the kernel’s entrypoint?



Carnegie Mellon University 15

Multiboot Specification

� Many OSes require their own bootloader
� Multiboot “standard”

� Kernel specifies entry point &c
� The multiboot header

must be located in the
first 8192 bytes

� This is the mysterious
multiboot.o…

0x1badb002

flags

checksum

Header_addr

load_addr

load_end_addr

bss_end_addr

entry_addr



Carnegie Mellon University 16

410 “Pebbles” (from Oskit)

� Entry point is asm function in multiboot.o
� This calls the first C function, multiboot_main



Carnegie Mellon University 17

OSkit

� multiboot_main calls:
- base_cpu_setup: init GDT, IDT, and TSS
- base_multiboot_init_mem: init LMM
- base_multiboot_init_cmdline
� parse cmdline passed to kernel by bootloader

� - main (yes, your main in kernel.c!)
- exit, if main ever returns
� press a key to reboot…



Carnegie Mellon University 18

Other Universes

� OpenFirmware
� Sun & Mac hardware
� Goal: share devices across processor families
� Solution: FORTH boot-loader code in each device

� “Big Iron” (mainframes)
� “Boot loader” may be a separate machine
� Run thorough diagnostics on main machine
� Debugger support for crashes



Carnegie Mellon University 19

Summary

� It's a long, strange trip
� Power on: maybe no RAM, maybe no CPU!!

� Maybe beep, maybe draw a sad face
� Locate OS
� Load N stages
� Tell kernel about the machine and the boot params
� Provide support to kernel once it's running


