
1

Review

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Exam will be closed-book

� Who is reading comp.risks?

� About today's review

� Mentioning key concepts

� No promise of exhaustive coverage

� Reading some of the textbook is advisable!

� Will attempt a 3-slide summary at end

3

OS Overview

� Abstraction/obstruction layer

� Virtualization

� Protected sharing/controlled interference

4

Hardware

� Inside the box – bridges

� User registers and other registers

� Fairy tales about system calls

� Kinds of memory, system-wide picture

� User vs. kernel

� Code, data, stack

� Per-process kernel stack

� Device driver, interrupt vector, masking interrupts

5

Hardware

� DMA

� System clock

� “Time of day” clock (aka “calendar”)

� Countdown timer

6

Memory hierarchy

� Not covered in class yet, not on exam

9

Process

� Pseudo-machine (registers, memory, I/O)

� Life cycle: fork()/exec()

� specifying memory, registers, I/O, kernel state

� the non-magic of stack setup (argv[])

� the non-magic function that calls main()

� States: running, runnable, sleeping

� also forking, zombie

� Process cleanup: why, what

10

Thread

� Core concept: schedulable set of registers

� With access to some resources (“ task” , in Mach
terminology)

� Thread stack

� Why threads?

� Cheap context switch

� Cheap access to shared resources

� Responsiveness

� Multiprocessors

11

Thread types

� Internal

� optional library

� register save/restore (incl. stack swap)

� Features

� only one outstanding system call

� “ cooperative” scheduling might not be

� no win on multiprocessors

12

Thread types

� Kernel threads

� resources (memory, ...) shared & reference-counted

� kernel manages: registers, kstack, scheduling

� Features

� good on multiprocessors

� may be “ heavyweight”

13

Thread types

� M:N

�M user threads share N kernel threads

� dedicated or shared

� Features

�Best of both worlds

�Or maybe worst of both worlds

14

Thread cancellation

� Asynchronous/immediate

�Don't try this at home

�How to garbage collect???

� Deferred

�Requires checking or cancellation points

15

Thread-specific data

� printf(“ Client machine is %s\n” , thread_var(0));

� reserved register or stack trick

16

Race conditions

� Lots of “ ++x vs. --x” examples using table format

� The setuid shell script attack

�(as an example in a different arena)

17

Wacky memory

� Memory writes may be re-ordered or coalesced

� That's not a bug, it's a feature!

18

Atomic sequences

� short

� require non-interference

� typically nobody is interfering

� store->cash += 50;

� “ mutex” / “ latch”

19

Voluntary de-scheduling

� “ Are we there yet?”

� We want somebody else to have our CPU

� Not-running is an OS service!

� Atomic:

�release state-guarding mutex

�go to sleep

� “ condition variable”

20

Critical section problem

� Three goals

�Mutual exclusion

�Progress – choosing time must be bounded

�Bounded waiting – choosing cannot be unboundedly
unfair

� Lecture 7

�“ Taking Turns When Necessary” algorithm

�Bakery algorithm

21

Mutex implementation

� Hardware flavors

�XCHG, Test&Set

�Load-linked, store-conditional

�i860 magic lock bit

�Basically isomorphic

� Lamport's algorithm (not on test!!!)

� “ Passing the buck” to the OS (or why not!)

� Kernel-assisted instruction sequences

22

Bounded waiting

� One algorithm discussed

� How critical in real life?

� Why or why not?

23

Environment matters

� Spin-wait on a uniprocessor????

� How reasonable is your scheduler?

� Maybe bounded waiting is free?

24

Condition variables

� Why we want them

� How to use them

� What's inside?

� The “ atomic sleep” problem

25

Semaphores

� Concept

� Thread-safe integer

� wait()/P()

� signal()/V()

� Use

� Can be mutexes or condition variables

� 42 flavors

� Binary, non-blocking, counting/recursive

26

Monitor

� Concept

� Collection of procedures

� Block of shared state

� Compiler-provided synchronization code

� Condition variables (again)

27

Deadlock

� Definition

� N processes

� Everybody waiting for somebody else

� Four requirements

� Process/Resource graphs

� Dining Philosophers example

28

Prevention

� Four Ways To Forgiveness

� One of them actually commonly used

29

Avoidance

� Keep system in “ safe” states

� States with an “ exit strategy”

� Assume some process will complete, release resources

� Make sure this enables another to finish, etc.

� Banker's Algorithm

30

Detection

� Don't be paranoid (but don't be oblivious)

� Scan for cycles

� When?

� What to do when you find one?

31

Starvation

� Always a danger

	 Understand vs. deadlock

� Solutions probably application-specific

32

Context switch

� yield() by hand (user-space threads)

	 No magic!

� yield() in the kernel

	 Built on the magic process_switch()

	 Inside the non-magic process_switch()

� Scheduling

� Saving

� Restoring

� Clock interrupts, I/O completion

33

Scheduling

� CPU-burst behavior

	 “ Exponential” fall-off in burst length

	 CPU-bound vs. I/O-bound

� Preemptive scheduling

	 Clock, I/O completion

� Scheduler vs. “ Dispatcher”

� Scheduling algorithm criteria

	 Who cares about what?

34

Scheduling – Algorithms

� FCFS, SJF, Priority

� Round-robin

� Multi-level

� Multi-processor (AMP, SMP)

� Real-time (hard, soft)

� The Mars Pathfinder story

	 priority-inheritance locks

35

Memory Management

� Where addresses come from

	 Program counter

	 Stack pointer

	 Random registers

� Image file vs. Memory image

� What a link editor does

	 relocation

� Logical vs. physical addresses

36

Swapping / Contiguous Allocation

� Swapping

	 Stun a process, write it out to disk

	 Memory can be used by another process

� Contiguous allocation

	 Need a big-enough place to swap in to

	 External fragmentation (vs. internal)

37

Paging

� Fine-grained map from virtual to physical

	 Page address ⇒ frame address

� Page table per process

	 Per-page bits: valid, permissions, dirty, referenced

	 Fancy data structures

 Multi-level page table

 Inverted page table

 Hashed/clustered page table

38

Segmentation

� Concept

	 Hardware expression of “ memory region”

	 Protection boundary, sharing boundary

� Typically combined with paging

	 The beautiful complex x86

 Useful summaries (for P3 if nothing else)

� Text pp. 309-311

� “ x86 Segmentation for the 15-410 Student” on web site

39

Less is more

� Software-managed TLB

 Choose your own page table structure

 “ Embody” it via behavior of TLB miss handler

40

Virtual Memory

� Observations

 Some stuff is “never” needed in memory

 Some stuff isn't needed in memory to start

 Some stuff is sometimes needed in memory

� Approach

 RAM is just a cache of system memory

 Page-valid bits record swapping out of pages

 Page-fault handler fixes everything up

41

Page-fault handling

� Map address to region

� Deduce semantic reason for fault

� Special techniques

 COW

 Zero pages

 Memory-mapped files

42

Paging

� Page replacement policy

 FIFO, optimal, LRU

 Reality: LRU approximations

 Clock-like algorithms

� Gritty implementation details

 Backing store policy

 Page buffering

 Reclaim faults

43

Paging

� Frame allocation policy

 Equal/proportional/...

� Thrashing

 Just not enough pages

 Working-set model

 Fault-frequency model

� Reducing paging

 Simple program optimizations

44

Summary – What is an OS?

� Parts of a machine

 Memory, registers

 Interrupts/traps and their handlers

� Parts of a process (incl. thread)

 Memory, registers

 System calls (stubs, handlers)

45

Summary – What is an OS?

� How to assemble machine parts into process parts

 How to make virtual memory from physical memory

 How to make a process from memory and registers

� And an executable file

� How to share a machine among processes

 (and how to share a process among threads)

 Context switch/yield

46

Summary – Synchronization

� Basic RAM-based algorithms

 Be able to read one and think about it

� Mutex, condition variable

 When to use each one, and why

 What's inside each one, and why

47

Summary – Deadlock

� A fundamental OS problem

� Affects every OS

� No “ silver bullet”

� What you need for deadlock

� Prevention, Avoidance, Detection/Recovery

� What each is, how they relate

