
1

Memory Hierarchy

Dave Eckhardt
de0u@andrew.cmu.edu



2

Outline

� Lecture versus book
� Some of Chapter 2

� Some of Chapter 10

� Memory hierarchy
� A principle (not just a collection of hacks)



3

Am I in the wrong class?

� “Memory hierarchy”: OS or Architecture?
� Yes

� Why cover it here?
� OS manages several layers

� RAM cache(s)
� Virtual memory
� File system buffer cache

� Learn core concept, apply as needed



4

Memory Desiderata

� Capacious
� Fast
� Cheap
� Compact
� Cold

� Pentium-4 2 Ghz: 75 watts!?
� Non-volatile (can remember w/o electricity)



5

You can't have it all

� Pick one
� ok, maybe two

� Bigger ⇒ slower (speed of light)

� Bigger ⇒ more defects

� If constant per unit area

� Faster, denser ⇒ hotter

� At least for FETs



6

Users want it all

� The ideal
� Infinitely large, fast, cheap memory

� Users want it (those pesky users!)

� They can't have it
� Ok, so cheat!



7

Locality of reference

� Users don't really access 4 gigabytes uniformly
� 80/20 “rule”

� 80% of the time is spent in 20% of the code

� Great, only 20% of the memory needs to be fast!

� Deception strategy
� Harness 2 (or more) kinds of memory together

� Secretly move information among memory types



8

Cache

� Small, fast memory...
� Backed by a large, slow memory
� Indexed via the large memory's address space
� Containing the most popular parts

� (at present)



9

Cache Example – Satellite Images

� SRAM cache holds popular pixels
� DRAM holds popular image areas
� Disk holds popular satellite images
� Tape holds one orbit's worth of images



10

Great Idea...

� Clean general-purpose implementation?
� #include <cache.h>

� No: tradeoffs different at each level
� Size ratio: data address / data size

� Speed ratio

� Access time = f(address)

� But the idea is general-purpose



11

Pyramid of Deception

Tape Robot

Disk Array

RAM

L2 cache

L1 cache



12

Key Questions

� Line size
� Placement/search
� Miss policy
� Eviction
� Write policy



13

Today's Examples

� L1 CPU cache
� Smallest, fastest

� Maybe on the same die as the CPU

� Maybe 2nd chip of multi-chip module

� Probably SRAM

� 2003: “around a megabyte”
� ~ 0.1% of RAM

� As far as CPU is concerned, this is the memory
� Indexed via RAM addresses (0..4 GB)



14

Today's Examples

� Disk block cache
� Holds disk sectors in RAM

� Entirely defined by software

� ~ 0.1% to maybe 1% of disk (varies widely)

� Indexed via (device, block number)



15

“Line size” = item size

� Many caches handle fixed-size objects
� Simpler search

� Predictable operation times

� L1 cache line size
� 4 32-bit words (486, IIRC)

� Disk cache line size
� Maybe disk sector (512 bytes)

� Maybe “file system block” (~16 sectors)



16

Picking a Line Size

� What should it be?
� Theory: see “locality of reference”

� (“typical” reference pattern)



17

Picking a Line Size

� Too big
� Waste throughput

� Fetch a megabyte, use 1 byte

� Waste cache space ⇒ reduce “hit rate”
� String move: *q++ = *p++
� Better have at least two cache lines!

� Too small
� Waste latency

� Frequently must fetch another line



18

Content-Addressable Memory

� RAM
� store(address, value)

� fetch(address) ⇒ value

� CAM
� store(address, value)

� fetch(value) ⇒ address

� “It's always the last place you look”
� Not with a CAM!



19

Memory Contents

Address Contents
1002083E58955
10024565704EC
1002804758D53
1002C8B047E8D



20

RAM + CAM = Cache

83E58955

04758D53

565704EC

8B047E8D

RAM

0

4

8

12



21

RAM + CAM = Cache

8B047E8D

565704EC

04758D53

83E58955

RAM

0

4

8

12

0010002C

00100024

00100028

00010020

CAM

0

4

8

12



22

RAM + CAM = Cache

8B047E8D

565704EC

04758D53

83E58955

RAM

0010002C

00100024

00100028

00010020

CAM



23

Content-Addressable Memory

� CAMS are cool!
� But fast CAMs are small (speed of light, etc.)
� If this were an architecture class...

� We would have 5 slides on associativity
� Not today: only 2



24

Placement/search

� Placement = "Where can we put ____?"
� “Direct mapped” - each item has one place

� Think: hash function

� "Fully associative" - each item can be any place
� Think: CAM

� Direct Mapped
� Placement & search are trivial

� False collisions are common

� String move: *q++ = *p++;

� Each iteration could be two cache misses!



25

Placement/search

� Fully Associative
� No false collisions

� Cache size/speed limited by CAM size

� Choosing associativity
� Trace-driven simulation

� Hardware constraints



26

Thinking the CAM way

� Are we having P2P yet?
� I want the latest freely available Janis Ian song...

� www.janisian.com/article-internet_debacle.html

� ...who on the Internet has a copy for me to download?

� I know what I want, but not where it is...
� ...Internet as a CAM 



27

Sample choices

� L1 cache
� Often direct mapped

� Sometimes 2-way associative

� Depends on phase of transistor

� Disk block cache
� Fully associative

� Open hash table = large variable-time CAM

� Fine since "CAM" lookup time << disk seek time



28

Miss Policy

� Miss policy: {Read,Write} X {Allocate,Around}

� Allocate: miss ⇒ allocate a slot

� Around: miss ⇒ don't change cache state

� Example: Read-allocate, write-around
� Read miss

� Allocate a slot in cache
� Fetch data from memory

� Write miss
� Store straight to memory



29

Miss Policy – L1 cache

� Mostly read-allocate, write-allocate
� But not for "uncacheable" memory

� ...such as Ethernet card ring buffers

� “Memory system” provides “cacheable” bit
� Some CPUs have "write block" instructions for 

gc



30

Miss Policy – Disk-block cache

� Mostly read-allocate, write-allocate
� What about reading (writing) a huge file?

� Would toast cache for no reason

� See (e.g.) madvise()



31

Eviction

� “The steady state of disks is 'full'”.
� Each placement requires an eviction

� Easy for direct-mapped caches

� Otherwise, policy is necessary

� Common policies
� Optimal, LRU

� LRU may be great, can be awful

� 4-slot associative cache: 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, ...



32

Eviction

� Random
� Pick a random item to evict

� Randomness protects against pathological cases

� When could it be good?
� L1 cache

� LRU is easy for 2-way associative!

� Disk block cache
� Frequently LRU, frequently modified

� “Prefer metadata”, other hacks



33

Write policy

� Write-through
� Store new value in cache

� Also store it through to next level

� Simple

� Write-back
� Store new value in cache

� Store it to next level only on eviction
� Requires “dirty bit”

� May save substantial work



34

Write policy

� L1 cache
� It depends

� May be write-through if next level is L2 cache

� Disk block cache
� Write-back

� Popular mutations
� Pre-emptive write-back if disk idle
� Bound write-back delay (crashes happen)
� Maybe don't write everything back (“softatime”)



35

Translation Caches

� Address mapping
� CPU presents virtual address (%CS:%EIP)

� Fetch segment descriptor from L1 cache (or not)

� Fetch page directory from L1 cache (or not)

� Fetch page table entry from L1 cache (or not)

� Fetch the actual word from L1 cache (or not)



36

“Translation lookaside buffer” (TLB)

� Observe result of first 3 fetches

� Segmentation, virtual ⇒ physical mapping

� Cache the mapping
� Key = virtual address

� Value = physical address

� Q: Write policy?



37

Challenges – Write-back failure

� Power failure?
� Battery-backed RAM!

� Crash?
� Maybe the old disk cache is ok after reboot?



38

Challenges - Coherence

� Multiprocessor: 4 L1 caches share L2 cache
� What if L1 does write-back?

� TLB: v ⇒ p all wrong after context switch

� What about non-participants?
� I/O device does DMA

� Solutions
� Snooping

� Invalidation messages (e.g., set_cr3())



39

Summary

� Memory hierarchy has many layers
� Size: kilobytes through terabytes

� Access time: nanoseconds through minutes

� Common questions, solutions
� Each instance is a little different

� But there are lots of cookbook solutions


