
1

File System (Interface)

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Today
� Chapter 11, File system interface

� Not: remote/distributed (11.5.2!!)

� Don't forget about Chapter 13
� Reviewing might help demystify readline() some

� “Fourth Wave” of readings posted to web site

3

Synchronization

� Two interesting papers about disks
� http://www.seagate.com/content/docs/pdf/whitepaper/

D2c_More_than_Interface_ATA_vs_SCSI_042003.p
df

� Google for “200 ways to revive a hard drive”

4

What's a file?

� Abstraction of persistent storage
� Hide details of storage devices

� sector addressing: CHS vs. LBA
� SCSI vs. IDE

� Logical grouping of data
� May be physically scattered

� Programs, data
� Some internal structure

5

Typical file attributes

� Name – 14? 8.3? 255?
� Unicode? ASCII? 6-bit? RADIX-50?

� Identifier - “file number”
� Type (or not)
� Location – device, location
� Size – real or otherwise
� Protection – Who can do what?
� Time, date, last modifier – monitoring, curiousity

6

“Extended” file attributes

� BSD Unix
� archived

� nodump

� append-only (user/system)

� immutable (user/system)

� MacOS
� icon color

7

Operations on Files

� Create – locate space, enter into directory
� Write, Read – according to position

pointer/cursor
� Seek – adjust position pointer
� Delete – remove from directory, release space
� Truncate

� Trim data from end

� Often all of it

� Append, Rename

8

Open-file State

� Expensive to specify name for each read()/write()
� String-based operation

� Directory look-up

� “Open-file” structure stores
� File-system / partition

� File-system-relative file number

� Read vs. write

� Cursor position

9

Open files (Unix Model)

� “In-core” / “Open file” file state
� Mirror of on-disk structure

� File number, size, permissions, modification time, ...

� Housekeeping info
� Back pointer to containing file system
� #readers, #writers
� Most-recently-read block

� How to access file (vector of methods)

� Pointer to file's type-specific data

� Shared when file is opened multiple times

10

Open files (Unix Model)

� “File-open” state (result of one open() call)
� Access mode (read vs. write, auto-append, ...)

� Credentials of process (when it opened the file)

� Cursor position

� Pointer to underlying “open file”

� Shared by multiple processes
� “copied” by fork()
� inherited across exec()

11

Example

int fd1, fd2, fd3;
off_t pos2, pos3;
char buf[10];

fd1 = open(“foo.c”, O_RDONLY, 0);
fd2 = dup(fd1);
fd3 = open(“foo.c”, O_RDONLY, 0);
read(fd1, &buf, sizeof (buf));

pos2 = lseek(fd2, 0L, SEEK_CUR);/*10*/
pos3 = lseek(fd3, 0L, SEEK_CUR);/*0*/

12

“Open file” vs. “File open”

Process
fd1: 3
fd2: 4
fd3: 5

vnode #334
readers 2
writers 0

ttyp5
r/o

r/w

Pos 10

Pos 0

13

File types (or not)

� Goal
� Avoid printing a binary executable file

� Find program which “understands” a file

� Filter file names
� *.exe are executable, *.c are C

� Tag file
� MacOS: 4-byte type, 4-byte creator

� Unix: Both/neither – Leave it (mostly) up to users

14

File Structure

� What's in a file?
� Stream of bytes?

� What character set? US-ASCII? Roman-1? Unicode?

� Stream of records?

� Array of records? Tree of records?

� Record structure?
� End of “line”

� CR, LF, CRLF

� Fixed-length? Varying? Bounded?

15

File Structure - Unix

� OS needs to know about executables
� “Magic numbers” in first two bytes

� A.OUT OMAGIC, NMAGIC, ZMAGIC
� ELF
� #! script

� Otherwise, array of bytes
� User/application remembers meaning (hope!)

� Try the “file” command
� Read /usr/share/magic

16

File Structure – MacOS

� Data fork
� Array of bytes

� Application-dependent structure

� Resource fork
� Table of resources

� Icon, Menu, Window, Dialog box

� Many resources are widely used & understood
� Desktop program displays icons from resource fork

17

Access Methods

� Provided by OS or program library
� Sequential

� Like a tape

� read() next, write() next, rewind()

� Sometimes: skip forward/backward

� Direct/relative
� Array of fixed-size records

� Read/write any record, by #

18

Access Methods – Indexed

� File contains records
� Records contain keys

� Index maps keys ⇒ records

� Sort data portion by key

� Binary search in multi-level list

� Fancy extensions
� Multiple keys, multiple indices

� Are we having a database yet?

19

Disk data structures (Intro)

� Split disk into partitions/slices/minidisks/...
� Or: glue disks together into volumes/logical disks

� Partition may contain...
� Paging area

� Indexed by memory structures
� “random garbage” when OS shuts down

� File system
� Block allocation: file # ⇒ block list

� Directory: name ⇒ file #

20

Directory Operations

� Lookup(“index.html”)
� Create(“index.html”)
� Delete(“index.html”)
� Rename(“index.html”, “index.html~”);
� Iterate over directory contents
� Scan file system

� Unix “find” command

� Backup program

21

Directory Types

� Single-level
� Flat global namespace – only one test.c

� Ok for floppy disks (maybe)

� Two-level
� Every user has a directory

� One test.c per user
� Typical of early timesharing

� Are we having fun yet?

22

Tree Directories

� Absolute Pathname
� Sequence of directory names

� Starting from “root”

� Ending with a file name

23

Tree Directories

eckhardt

students

irwin

bob bin

sh ls

usr

mji

/

sh.c

24

Tree Directories

� Directories are special files
� Created with special system calls – mkdir()

� Format understood, maintained by OS

� Current directory (“.”)
� “Where I am now”

� Start of relative pathname

� ./stuff/foo.c aka stuff/foo.c
� ../joe/foo.c aka /usr/joe/foo.c

25

DAG Directories

� Share files and
directories between
users

� Not mine, not yours:
ours

� Destroy when
everybody deletes

� Unix “hard link”
� For files (“.. problem”)

usr

mji

/

paper.ms

owens

26

Soft links

� Hard links “too hard”?
� Level of indirection in file system

� No “one true name” for a file

� NIH syndrome?

� Soft link / symbolic link / “short cut”
� Tiny file, special type

� Contains name of another file

� OS dereferences link when you open() it

27

Hard vs. Soft Links

� Hard links
� Enable reference-counted sharing

� No name is better than another

� Dangerous to allow hard links to directories

� Soft links
� Work across file system & machine boundaries

� Easier to explain

� “Dangling link” problem

28

Graph Directories

� “find” can be slow!
� Need real garbage

collection
� Do we really need

this?

usr

mji

/

owens

top

29

Mounting

� Multiple disks on machine
� Multiple partitions on disk
� File system within a partition

� Or, within a volume / logical volume / ...

� How to name files in “another” file system?
� Wrong way

� C:\temp vs. D:\temp
� [1003,221]PROFILE.CMD vs. [1207,438]PROFILE.CMD

30

Mounting

/

mji owens

usr0

dae jdi

usr1

31

Multiple Users

� Users want to share files
� What's a user?

� Strings can be cumbersome

� Integers are nicer

� User ID / “uid” (Unix), Security ID / “SID”
(Win)

� What's a group?
� A set of users

� May have its own gid / sid

32

Protection

� Override bit (e.g., MS-DOG)
� Bit says “don't delete this file”

� Unless I clear the bit

� Per-file passwords
� Annoying in a hurry

� Per-directory passwords
� Still annoying

33

Protection

� Access modes
� Read, Write, Execute, Append, Delete, List, Lock, ...

� Access Control List (ACL)
� File stores list of (user, modes) tuples

� Cumbersome to store, view, manage

� Capability system
� User given list of (file, access keys) tuples

� Revocation problem

34

Protection – typical

� File specifies owner, group
� Permissions for each

� Read, write, ...

� Permissions for “other” / “world”
� Read, write, ...

� Unix
� r, w, x = 4, 2, 1

� rwxr-x—x = 0751 (octal)

� V7: 3 16-bit words specified bits, user #, group #

35

Summary

� File
� Abstraction of disk/tape storage

� Records, not sectors
� Type information

� Naming
� Complexity due to linking

� Ownership, permissions

� Semantics of multiple open()s

� More in 20.7, 20.8

