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Synchronization

� P2 grading questions
� Send us mail, expect to hear from your grader

� Today
� Chapter 12 (not: Log-structured, NFS)
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Outline

� File system code layers (abstract)
� Disk, memory structures
� Unix “VFS” layeringindirection
� Directories
� Block allocation strategies, free space
� Cache tricks
� Recovery, backups
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File System Layers

� Device drivers
� read/write(disk, start-sector, count)

� Block I/O
� read/write(partition, block) [cached]

� File I/O
� read/write (file, block)

� File system
� manage directories, free space
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File System Layers

� Multi-filesystem namespace
� Partitioning, names for devices

� Mounting

� Unifying multiple file system types
� UFS, ext2fs, ext3fs, reiserfs, FAT, 9660, ...
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Disk Structures

� Boot area (first block/track/cylinder)
� File system control block

� Key parameters: #blocks, metadata layout

� Unix: “superblock”

� Directories
� “File control block” (Unix: “inode”)

� ownership/permissions

� data location
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Memory Structures

� In-memory partition tables
� Cached directory information
� System-wide open-file table

� In-memory file control blocks

� Process open-file tables
� Open mode (read/write/append/...)

� “Cursor” (read/write position)
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VFS layer

� Goal
� Allow one machine to use multiple file system types

� Unix FFS
� MS-DOS FAT
� CD-ROM ISO9660
� Remote/distributed: NFS/AFS

� Standard system calls should work transparently

� Solution
� Insert a level of indirection!
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Single File System

n = read(fd, buf, size)

INT 54

sys_read(fd, buf, len)

rdblk(dev, N)sleep() wakeup()

namei() iget() iput()

startIDE() IDEintr()
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VFS “Virtualization”

n = read(fd, buf, size)

INT 54

iget() iput()

vfs_read()

ufs_read() procfs_read()

namei() procfs_domem()
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VFS layer – file system operations

struct vfsops {
  char *name;
  int (*vfs_mount)(); 
  int (*vfs_statfs)();
  int (*vfs_vget)();
  int (*vfs_unmount)();
  ...
}
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VFS layer – file operations

� Each VFS provides an array of methods
� VOP_LOOKUP(vnode, new_vnode,  name)
� VOP_CREATE(vnode, new_vnode, name, 

attributes)
� VOP_OPEN(vnode, mode, credentials, process)
� VOP_READ(vnode, uio, readwrite, credentials)
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Directories

� External interface
� vnode2 = lookup(vnode1, name)

� Traditional Unix FFS directories
� List of (name,inode #) - not sorted

� Names are variable-length

� Lookup is linear
� How long does it take to delete N files?

� Common alternative: hash-table directories
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Allocation / Mapping

� Allocation problem
� Where do I put the next block of this file?

� Near the previous block?

� Mapping problem
� Where is block 32 of this file?

� Similar to virtual memory
� Multiple large “address spaces” specific to each file
� Only one underlying “address space” of blocks
� Source address space may be sparse!
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Allocation – Contiguous

� Approach
� File location defined as (start, length)

� Motivation
� Sequential disk accesses are cheap

� Bookkeeping is easy

� Issues
� Dynamic storage allocation (fragmentation, 

compaction)

� Must pre-declare file size at creation
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Allocation – Linked

� Approach
� File location defined as (start)

� Each disk block contains pointer to next

� Motivation
� Avoid fragmentation problems

� Allow file growth
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Allocation – Linked

� Issues
� 508-byte blocks don't match memory pages

� In general, one seek per block read/written - slow!
� Very hard to access file blocks at random

� lseek(fd, 37 * 1024, SEEK_SET);

� Benefit
� Can recover files even if directories destroyed

� Common modification
� Linked multi-block clusters, not blocks



18

Allocation – FAT

� Used by MS-DOS, OS/2, Windows
� Digital cameras, GPS receivers, printers, PalmOS, ...

� Linked allocation
� Links stored “out of band” in table
� Table at start of disk

� Next-block pointer array

� Indexed by block number

� Next=0 means “free”
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Allocation - FAT
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Allocation - FAT
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Allocation - FAT
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Allocation - FAT
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Allocation – FAT

� Issues
� Damage to FAT scrambles entire disk

� Solution: backup FAT

� Generally two seeks per block read/write
� Seek to FAT, read, seek to actual block (repeat)
� Unless FAT can be cached

� Still very hard to access random file blocks
� Linear time to walk through FAT
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Allocation – Indexed

� Motivation
� Avoid fragmentation 

problems

� Allow file growth

� Improve random 
access

� Approach
� Per-file block array
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Allocation – Indexed

� Allows “holes”
� foo.c is sequential

� foo.db, block 1 ⇒-1

� “sparse allocation”
� read() returns nulls

� write() requires alloc
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Allocation – Indexed

� How big should index block be?
� Too big: lots of wasted pointers

� Too small: limits file size

� Combining index blocks
� Linked

� Multi-level

� What Unix actually does
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Linked Index Blocks

� Last pointer indicates 
next index block

� Simple
� Access is not-so-
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Multi-Level Index Blocks

� Index blocks of index 
blocks

� Does this look 
familiar?

� Allows big holes
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Unix Index Blocks

� Intuition
� Many files are small

� Length = 0, length = 1, length < 80, ...

� Some files are huge (3 gigabytes)

� “Clever heuristic” in Unix FFS inode
� 12 (direct) block pointers: 12 * 8 KB = 96 KB

� 3 indirect block pointers
� single, double, triple
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Unix Index Blocks
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Tracking Free Space

� Bit-vector
� 1 bit per block: boolean “free”

� Check each word vs. 0

� Use “first bit set” instruction

� Text example
� 1.3 GB disk, 512 B sectors: 332 KB  bit vector

� Need to keep (much of) it in RAM
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Tracking Free Space

� Linked list
� Superblock points to first free block

� Each free block points to next

� Cost to allocate N blocks is linear
� Free block can point to multiple free blocks 

� FAT approach provides free-block list  “for free”

� Keep free-extent lists
� (block,count)
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Unified Buffer Cache

� Some memory frames back virtual pages
� Some memory frames cache file blocks
� Observation

� In-memory virtual pages may be backed by disk

� Why not have just one cache?
� Some of RAM is virtual memory
� Some of RAM is disk blocks
� Mix varies according to load
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Cache tricks

� Read-ahead
for (i = 0; i < filesize; ++i)
  putc(getc(infile), outfile);
� System observes sequential reads

� can pipeline reads to overlap “computation”, read latency

� Free-behind
� Discard buffer from cache when next is requested

� Good for large files

� “Anti-LRU”
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Recovery

� System crash...now what?
� Some RAM contents were lost

� Free-space list on disk may be wrong

� Scan file system
� Check invariants

� Unreferenced files
� Double-allocated blocks
� Unallocated blocks

� Fix problems
� Expert user???
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Backups

� Incremental approach
� Monthly: dump entire file system

� Weekly: dump changes since last monthly

� Daily: dump changes since last weekly

� Merge approach - www.teradactyl.com
� Collect changes since yesterday

� Scan file system by modification time

� Two tape drives merge yesterday's tape, today's delta


