
1

File System (Internals)

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� P2 grading questions
� Send us mail, expect to hear from your grader

� Today
� Chapter 12 (not: Log-structured, NFS)

3

Outline

� File system code layers (abstract)
� Disk, memory structures
� Unix “VFS” layeringindirection
� Directories
� Block allocation strategies, free space
� Cache tricks
� Recovery, backups

4

File System Layers

� Device drivers
� read/write(disk, start-sector, count)

� Block I/O
� read/write(partition, block) [cached]

� File I/O
� read/write (file, block)

� File system
� manage directories, free space

5

File System Layers

� Multi-filesystem namespace
� Partitioning, names for devices

� Mounting

� Unifying multiple file system types
� UFS, ext2fs, ext3fs, reiserfs, FAT, 9660, ...

6

Disk Structures

� Boot area (first block/track/cylinder)
� File system control block

� Key parameters: #blocks, metadata layout

� Unix: “superblock”

� Directories
� “File control block” (Unix: “inode”)

� ownership/permissions

� data location

7

Memory Structures

� In-memory partition tables
� Cached directory information
� System-wide open-file table

� In-memory file control blocks

� Process open-file tables
� Open mode (read/write/append/...)

� “Cursor” (read/write position)

8

VFS layer

� Goal
� Allow one machine to use multiple file system types

� Unix FFS
� MS-DOS FAT
� CD-ROM ISO9660
� Remote/distributed: NFS/AFS

� Standard system calls should work transparently

� Solution
� Insert a level of indirection!

9

Single File System

n = read(fd, buf, size)

INT 54

sys_read(fd, buf, len)

rdblk(dev, N)sleep() wakeup()

namei() iget() iput()

startIDE() IDEintr()

10

VFS “Virtualization”

n = read(fd, buf, size)

INT 54

iget() iput()

vfs_read()

ufs_read() procfs_read()

namei() procfs_domem()

11

VFS layer – file system operations

struct vfsops {
 char *name;
 int (*vfs_mount)();
 int (*vfs_statfs)();
 int (*vfs_vget)();
 int (*vfs_unmount)();
 ...
}

12

VFS layer – file operations

� Each VFS provides an array of methods
� VOP_LOOKUP(vnode, new_vnode, name)
� VOP_CREATE(vnode, new_vnode, name,

attributes)
� VOP_OPEN(vnode, mode, credentials, process)
� VOP_READ(vnode, uio, readwrite, credentials)

13

Directories

� External interface
� vnode2 = lookup(vnode1, name)

� Traditional Unix FFS directories
� List of (name,inode #) - not sorted

� Names are variable-length

� Lookup is linear
� How long does it take to delete N files?

� Common alternative: hash-table directories

14

Allocation / Mapping

� Allocation problem
� Where do I put the next block of this file?

� Near the previous block?

� Mapping problem
� Where is block 32 of this file?

� Similar to virtual memory
� Multiple large “address spaces” specific to each file
� Only one underlying “address space” of blocks
� Source address space may be sparse!

15

Allocation – Contiguous

� Approach
� File location defined as (start, length)

� Motivation
� Sequential disk accesses are cheap

� Bookkeeping is easy

� Issues
� Dynamic storage allocation (fragmentation,

compaction)

� Must pre-declare file size at creation

16

Allocation – Linked

� Approach
� File location defined as (start)

� Each disk block contains pointer to next

� Motivation
� Avoid fragmentation problems

� Allow file growth

17

Allocation – Linked

� Issues
� 508-byte blocks don't match memory pages

� In general, one seek per block read/written - slow!
� Very hard to access file blocks at random

� lseek(fd, 37 * 1024, SEEK_SET);

� Benefit
� Can recover files even if directories destroyed

� Common modification
� Linked multi-block clusters, not blocks

18

Allocation – FAT

� Used by MS-DOS, OS/2, Windows
� Digital cameras, GPS receivers, printers, PalmOS, ...

� Linked allocation
� Links stored “out of band” in table
� Table at start of disk

� Next-block pointer array

� Indexed by block number

� Next=0 means “free”

19

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.java

dir.c

0

1

sys.ini 4

20

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.java

dir.c

0

1

sys.ini 4

21

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.java

dir.c

0

1

sys.ini 4

22

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.java

dir.c

0

1

sys.ini 4

hello.java: 0, 7

23

Allocation – FAT

� Issues
� Damage to FAT scrambles entire disk

� Solution: backup FAT

� Generally two seeks per block read/write
� Seek to FAT, read, seek to actual block (repeat)
� Unless FAT can be cached

� Still very hard to access random file blocks
� Linear time to walk through FAT

24

Allocation – Indexed

� Motivation
� Avoid fragmentation

problems

� Allow file growth

� Improve random
access

� Approach
� Per-file block array

3001

-1
-1
-1

3002

101
100
99

-1

-1
-1
-1

6002

-1
-1

3004

25

Allocation – Indexed

� Allows “holes”
� foo.c is sequential

� foo.db, block 1 ⇒-1

� “sparse allocation”
� read() returns nulls

� write() requires alloc

3001

-1
-1
-1

3002

101
100
99

-1

-1
-1
-1

6002

-1
-1

3004
foo.c foo.db

26

Allocation – Indexed

� How big should index block be?
� Too big: lots of wasted pointers

� Too small: limits file size

� Combining index blocks
� Linked

� Multi-level

� What Unix actually does

27

Linked Index Blocks

� Last pointer indicates
next index block

� Simple
� Access is not-so-

random 3001

45789
10460
10459
3002

101
100
99

-1

-1
-1
-1
-1

10463
10462
10461

28

Multi-Level Index Blocks

� Index blocks of index
blocks

� Does this look
familiar?

� Allows big holes

10461
10460
10459
3002
3001
101
100
99

-1
-1

9988
9987

29

Unix Index Blocks

� Intuition
� Many files are small

� Length = 0, length = 1, length < 80, ...

� Some files are huge (3 gigabytes)

� “Clever heuristic” in Unix FFS inode
� 12 (direct) block pointers: 12 * 8 KB = 96 KB

� 3 indirect block pointers
� single, double, triple

30

Unix Index Blocks

106

105

501

502

102
101

16
15

18
17

500
100

1000 104
103

20
19

22
21

24
23

26
25

28
27

30
29

32
31

31

Tracking Free Space

� Bit-vector
� 1 bit per block: boolean “free”

� Check each word vs. 0

� Use “first bit set” instruction

� Text example
� 1.3 GB disk, 512 B sectors: 332 KB bit vector

� Need to keep (much of) it in RAM

32

Tracking Free Space

� Linked list
� Superblock points to first free block

� Each free block points to next

� Cost to allocate N blocks is linear
� Free block can point to multiple free blocks

� FAT approach provides free-block list “for free”

� Keep free-extent lists
� (block,count)

33

Unified Buffer Cache

� Some memory frames back virtual pages
� Some memory frames cache file blocks
� Observation

� In-memory virtual pages may be backed by disk

� Why not have just one cache?
� Some of RAM is virtual memory
� Some of RAM is disk blocks
� Mix varies according to load

34

Cache tricks

� Read-ahead
for (i = 0; i < filesize; ++i)
 putc(getc(infile), outfile);
� System observes sequential reads

� can pipeline reads to overlap “computation”, read latency

� Free-behind
� Discard buffer from cache when next is requested

� Good for large files

� “Anti-LRU”

35

Recovery

� System crash...now what?
� Some RAM contents were lost

� Free-space list on disk may be wrong

� Scan file system
� Check invariants

� Unreferenced files
� Double-allocated blocks
� Unallocated blocks

� Fix problems
� Expert user???

36

Backups

� Incremental approach
� Monthly: dump entire file system

� Weekly: dump changes since last monthly

� Daily: dump changes since last weekly

� Merge approach - www.teradactyl.com
� Collect changes since yesterday

� Scan file system by modification time

� Two tape drives merge yesterday's tape, today's delta

