
1

Protection

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Please fill out P3/P4 registration form
� We need to know whom to grade when

� Debugging is a skill
� Last (?) wave of readings posted

3

Outline

� Protection (Chapter 18)
� Protection vs. Security

� Domains (Unix, Multics)

� Access Matrix
� Concept, Implementation

� Revocation

� Mentioning EROS

4

Protection vs. Security

� Textbook's distinction
� Protection happens inside a computer

� Which parts may access which other parts (how)?

� Security considers external threats
� Is the system's model intact or compromised?

5

Protection

� Goals
� Prevent intentional attacks

� “Prove” access policies are always obeyed

� Detect bugs
� “Wild pointer” example

� Policy specifications
� System administrators

� Users - May want to add new privileges to system

6

Objects

� Hardware
� Single-use: printer, serial port, CD writer, ...

� Aggregates: CPU, memory, disks, screen

� Logical objects
� Files

� Processes

� TCP port 25

� Database tables

7

Operations

� Depend on object
� CPU: execute(...)

� CD-ROM: read(...)

� Disk: read_sector(), write_sector()

8

Access Control

� Your processes should access only “your stuff”
� Implemented by many systems

� Principle of least privilege
� (text: “need-to-know”)

� cc -c foo.c
� should read foo.c, stdio.h, ...
� should write foo.o
� should not write ~/.cshrc

� This is harder

9

Protection Domains

� process → protection domain

� protection domain → list of access rights

� access right = (object, operations)

10

Protection Domain Example

� Domain 1
� /dev/null, write

� /usr/davide/.cshrc, read/write

� /usr/smuckle/.cshrc, read

� Domain 2
� /dev/null, write

� /usr/smuckle/.cshrc, read/write

� /usr/davide/.cshrc, read

11

Protection Domain Usage

� Least privilege requires domain changes
� Doing different jobs requires different privileges

� Two general approaches

� “process → domain” mapping constant
� Requires domains to add and drop privileges

� Domain privileges constant
� Processes domain-switch between high-privilege, low-

privilege domains

12

Protection Domain Models

� Three models
� Domain = user

� Domain = process

� Domain = procedure

13

Domain = user

� Object permissions depend on who you are
� All processes you are running share privileges
� Domain switch = Log off

14

Domain = process

� Resources managed by special processes
� Printer daemon, file server process, ...

� Domain switch
� IPC to resource owner/provider/server

� “Please send these bytes to the printer”

15

Domain = procedure

� Processor limits access at fine grain
� Per-variable protection!

� Domain switch – Inter-domain procedure call
� nr = read(fd, buf, sizeof (buf))

� Automatic creation of “the correct domain” for read()
� Access to OS's file system data structures
� Permission to call OS's internal “read-block”
� Permission to write to user's buf

16

Unix “setuid” concept

� Assume Unix domain = numeric user id
� Not the whole story!

� Group id, group vector
� Process group, controlling terminal
� Superuser

� Domain switch via setuid executable
� Special bit: exec() changes uid to file owner

� Gatekeeper programs
� Allow user to add file to print queue

17

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

18

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Smaller
Simpler

More Critical

19

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program
Equally

Trusted!!

20

Multics Approach

� Trust hierarchy
� Small “simple” very-trusted kernel

� Main job: access control

� Goal: “prove” it correct

21

Multics Ring Architecture

� Segmented address space
� Segment = file (persistent segments)

� Segments live in nested rings (0..7)
� Ring 0 = kernel, “inside” every other ring

� Ring 1 = operating system core

� Ring 2 = operating system services

� ...

� Ring 7 = user programs

22

Multics Rings

File System
Page Store

Disk

Kernel

23

Multics Domain Switching

� CPU has current ring number register
� Segments have

� Ring number

� Access bits (read, write, execute)

� Access bracket [min, max]
� Segment “part of” ring min...ring max

� Entry limit

� List of gates (procedure call entry) points

� Every procedure call is a potential domain switch

24

Multics Domain Switching

� min <= current-ring <= max
� Procedure is “part of” 2..4

� We are executing in ring 3

� Standard procedure call

25

Multics Domain Switching

� current-ring > max
� Calling a more-privileged procedure

� It can do whatever it wants to us

� Trap to ring 0

� Check current-ring < entry-limit
� User code may be forbidden to call ring 0 directly

� Check call address is a legal entry point

� Set current-ring to segment-ring

26

Multics Domain Switching

� Current-ring < min
� Calling a less-privileged procedure

� Trap to ring 0

� Copy “privileged” procedure call parameters
� Must be in low-privilege area for callee to access

� Set current-ring to segment-ring

27

Multics Ring Architecture

� Does this look familiar?
� Benefits

� Core security policy small, centralized

� Damage limited vs. Unix “superuser”' model

� Concerns
� Hierarchy conflicts with least privilege

� Requires specific hardware

� Performance (maybe)

28

More About Multics

� Back to the future (1969!)
� Symmetric multiprocessing

� Hierarchical file system (access control lists)

� Memory-mapped files

� Hot-pluggable CPUs, memory, disks

� Significant influence on Unix
� Ken Thompson was a Multics contributor

� www.multicians.org

29

Access Matrix Concept

File1 File2 File3 Printer

rwxd rD1

r rwxd wD2

rwxd rwxd rwxd wD3

r r rD4

30

Access Matrix Details

� OS must still define process → domain mapping

� Must enforce domain-switching rules
� Add domain columns (domains are objects)

� Add switch-to rights to domain objects

� Subtle (dangerous)

31

Adding “Switch-Domain” Rights

File1 File2 File3 D1

rwxd rD1

r rwxd sD2

rwxd rwxd rwxdD3

r r rD4

32

Updating the Matrix

� Add copy rights to objects
� Domain D1 may copy read rights for File2

� So D1 can give D2 the right to read File2

33

Adding “Switch-Domain” Rights

File1 File2 File3

rwxdR rD1

r rwxdD2

rwxd rwxd rwxdD3

r r rD4

34

Adding “Switch-Domain” Rights

File1 File2 File3

rwxdR rD1

r r rwxdD2

rwxd rwxd rwxdD3

r r rD4

35

Updating the Matrix

� Add owner rights to objects
� D1 has owner rights for O47

� D1 can modify the O47 column at will

� Add control rights to domain objects
� D1 has control rights for D2

� D1 can modify D2's rights to any object

36

Access Matrix Implementation

� Implement matrix via matrix?
� Huge, messy, slow

� Very clumsy for...
� “world readable file”

� “private file”

37

Access Matrix Implementation

� Access Control Lists
� List per matrix column (object)

� Naively, domain = user

� AFS ACLs
� domain = user, user:group, anonymous, IP-list
� positive rights, negative rights

� Doesn't really do least privilege

38

Access Matrix Implementation

� Capability Lists
� List per matrix row (domain)

� Naively, domain = user
� Typically, domain = process

� Permit least privilege
� Domains can transfer & forget capabilities

� Bootstrapping problem
� Who gets which rights at boot?
� Who gets which rights at login?

39

Mixed approach

� Store ACL for each file
� Must get ACL from disk

� May be long, complicated

� open() checks ACL, creates capability
� Records access rights for this process

� Quick verification on each read(), write()

40

Revocation

� Adding rights is easy
� Make the change

� Tell the user “ok, try again now”

� Removing rights is harder
� May be cached, copied, stored

41

Revocation Taxonomy

� Immediate/delayed
� How fast? Can we know when it's safe?

� Selective/global
� Delete some domain's rights?

� Partial/total
� Delete particular rights for a domain?

� Temporary/permanent
� Is there a way to re-add the rights later?

42

Revocation Approaches

� Access Control List
� Modify the list

� “Done”
� ...if no cached capabilities

� Capability timeouts
� Must periodically re-acquire (if allowed)

43

Revocation Approaches

� Capability check-out list
� Record all holders of a capability

� Run around and delete the right ones

� Indirection table
� Domains point to table entry

� Table entry contains capability

� Invalidate entry to revoke everybody's access

44

Revocation Approaches

� Proxy processes
� Give out right to contact an object manager
� Manager applies per-object policy

� “Capability expired”
� “No longer trust Joe”

45

Revocation Approaches

� Keyed capabilities
� Object maintains list of active keys

� Give out (key, rights)

� Check “key still valid” per access

� Owner can invalidate individual keys

� Special case: #keys = 1
� Versioned capabilities

� NFS file handles contain inode generation numbers

46

Mentioning EROS

� Text mentions Hydra, CAP
� Late 70's, early 80's

� Dead

� EROS (“Extremely Reliable Operating System”)
� UPenn, Johns Hopkins

� Based on commercial GNOSIS/KeyKOS OS

� www.eros-os.org

47

EROS Overview

� “Pure capability” system
� “ACLs considered harmful”

� “Pure principle system”
� Don't compromise principle for performance

� Aggressive performance goal
� Domain switch ~100X procedure call

� Unusual approach to bootstrapping problem
� Persistent processes!

48

Persistent Processes

� No such thing as reboot
� Processes last “forever” (until exit)
� OS kernel checkpoints system state to disk

� Memory & registers defined as cache of disk state
� Restart restores system state into hardware
� “Login” reconnects you to your processes

49

EROS Objects

� Disk pages
� capabilities: read/write, read-only

� Capability nodes
� Arrays of capabilities

� Numbers
� Protected capability ranges

� “Disk pages 0...16384”

� Process – executable node

50

EROS Revocation Stance

� Really revoking access is hard
� The user could have copied the file

� Don't give out real capabilities
� Give out proxy capabilities

� Then revoke however you wish

51

EROS Quick Start

� www.eros-os.org/
� reliability/paper.html

� essays/
� capintro.html
� wherefrom.html
� ACLSvCaps.html

52

Concept Summary

� Object
� Operations

� Domain
� Switching

� Capabilities
� Revoking

� “Protection” vs. “security”
� Protection is what our sysadmin hopes is happening...

