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Synchronization

� Please fill out P3/P4 registration form
� We need to know whom to grade when

� Debugging is a skill
� Last (?) wave of readings posted
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Outline

� Protection (Chapter 18)
� Protection vs. Security

� Domains (Unix, Multics)

� Access Matrix
� Concept, Implementation

� Revocation

� Mentioning EROS
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Protection vs. Security

� Textbook's distinction
� Protection happens inside a computer

� Which parts may access which other parts (how)?

� Security considers external threats
� Is the system's model intact or compromised?
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Protection

� Goals
� Prevent intentional attacks

� “Prove” access policies are always obeyed

� Detect bugs
� “Wild pointer” example

� Policy specifications
� System administrators

� Users - May want to add new privileges to system
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Objects

� Hardware
� Single-use: printer, serial port, CD writer, ...

� Aggregates: CPU, memory, disks, screen

� Logical objects
� Files

� Processes

� TCP port 25

� Database tables
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Operations

� Depend on object
� CPU: execute(...)

� CD-ROM: read(...)

� Disk: read_sector(), write_sector()
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Access Control

� Your processes should access only “your stuff”
� Implemented by many systems

� Principle of least privilege
� (text: “need-to-know”)

� cc -c foo.c
� should read foo.c, stdio.h, ...
� should write foo.o
� should not write ~/.cshrc

� This is harder
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Protection Domains

� process →  protection domain

� protection domain →  list of access rights

� access right = (object, operations)
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Protection Domain Example

� Domain 1
� /dev/null, write

� /usr/davide/.cshrc, read/write

� /usr/smuckle/.cshrc, read

� Domain 2
� /dev/null, write

� /usr/smuckle/.cshrc, read/write

� /usr/davide/.cshrc, read
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Protection Domain Usage

� Least privilege requires domain changes
� Doing different jobs requires different privileges

� Two general approaches

� “process →  domain” mapping constant
� Requires domains to add and drop privileges

� Domain privileges constant
� Processes domain-switch between high-privilege, low-

privilege domains
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Protection Domain Models

� Three models
� Domain = user

� Domain = process

� Domain = procedure
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Domain = user

� Object permissions depend on who you are
� All processes you are running share privileges
� Domain switch = Log off
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Domain = process

� Resources managed by special processes
� Printer daemon, file server process, ...

� Domain switch
� IPC to resource owner/provider/server

� “Please send these bytes to the printer”
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Domain = procedure

� Processor limits access at fine grain
� Per-variable protection!

� Domain switch – Inter-domain procedure call
� nr = read(fd, buf, sizeof (buf))

� Automatic creation of “the correct domain” for read()
� Access to OS's file system data structures
� Permission to call OS's internal “read-block”
� Permission to write to user's buf
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Unix “setuid” concept

� Assume Unix domain = numeric user id
� Not the whole story!

� Group id, group vector
� Process group, controlling terminal
� Superuser

� Domain switch via setuid executable
� Special bit: exec() changes uid to file owner

� Gatekeeper programs
� Allow user to add file to print queue
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Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program
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Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Smaller
Simpler

More Critical
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Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program
Equally

Trusted!!
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Multics Approach

� Trust hierarchy
� Small “simple” very-trusted kernel

� Main job: access control

� Goal: “prove” it correct
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Multics Ring Architecture

� Segmented address space
� Segment = file (persistent segments)

� Segments live in nested rings (0..7)
� Ring 0 = kernel, “inside” every other ring

� Ring 1 = operating system core

� Ring 2 = operating system services

� ...

� Ring 7 = user programs
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Multics Rings

File System
Page Store

Disk

Kernel
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Multics Domain Switching

� CPU has current ring number register
� Segments have

� Ring number

� Access bits (read, write, execute)

� Access bracket [min, max]
� Segment “part of” ring min...ring max

� Entry limit

� List of gates (procedure call entry) points

� Every procedure call is a potential domain switch
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Multics Domain Switching

� min <= current-ring <= max
� Procedure is “part of” 2..4

� We are executing in ring 3

� Standard procedure call



25

Multics Domain Switching

� current-ring > max
� Calling a more-privileged procedure

� It can do whatever it wants to us

� Trap to ring 0

� Check current-ring < entry-limit
� User code may be forbidden to call ring 0 directly

� Check call address is a legal entry point

� Set current-ring to segment-ring
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Multics Domain Switching

� Current-ring < min
� Calling a less-privileged procedure

� Trap to ring 0

� Copy “privileged” procedure call parameters
� Must be in low-privilege area for callee to access

� Set current-ring to segment-ring
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Multics Ring Architecture

� Does this look familiar?
� Benefits

� Core security policy small, centralized

� Damage limited vs. Unix “superuser”' model

� Concerns
� Hierarchy conflicts with least privilege

� Requires specific hardware

� Performance (maybe)
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More About Multics

� Back to the future (1969!)
� Symmetric multiprocessing

� Hierarchical file system (access control lists)

� Memory-mapped files

� Hot-pluggable CPUs, memory, disks

� Significant influence on Unix
� Ken Thompson was a Multics contributor

� www.multicians.org
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Access Matrix Concept

File1 File2 File3 Printer

rwxd rD1

r rwxd wD2

rwxd rwxd rwxd wD3

r r rD4
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Access Matrix Details

� OS must still define process →  domain mapping

� Must enforce domain-switching rules
� Add domain columns (domains are objects)

� Add switch-to rights to domain objects

� Subtle (dangerous)
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Adding “Switch-Domain” Rights

File1 File2 File3 D1

rwxd rD1

r rwxd sD2

rwxd rwxd rwxdD3

r r rD4
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Updating the Matrix 

� Add copy rights to objects
� Domain D1 may copy read rights for File2

� So D1 can give D2 the right to read File2
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Adding “Switch-Domain” Rights

File1 File2 File3

rwxdR rD1

r rwxdD2

rwxd rwxd rwxdD3

r r rD4
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Adding “Switch-Domain” Rights

File1 File2 File3

rwxdR rD1

r r rwxdD2

rwxd rwxd rwxdD3

r r rD4
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Updating the Matrix 

� Add owner rights to objects
� D1 has owner rights for O47

� D1 can modify the O47 column at will

� Add control rights to domain objects
� D1 has control rights for D2

� D1 can modify D2's rights to any object
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Access Matrix Implementation

� Implement matrix via matrix?
� Huge, messy, slow

� Very clumsy for...
� “world readable file”

� “private file”
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Access Matrix Implementation

� Access Control Lists
� List per matrix column (object)

� Naively, domain = user

� AFS ACLs
� domain = user, user:group, anonymous, IP-list
� positive rights, negative rights

� Doesn't really do least privilege
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Access Matrix Implementation

� Capability Lists
� List per matrix row (domain)

� Naively, domain = user
� Typically, domain = process

� Permit least privilege
� Domains can transfer & forget capabilities

� Bootstrapping problem
� Who gets which rights at boot?
� Who gets which rights at login?
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Mixed approach

� Store ACL for each file
� Must get ACL from disk

� May be long, complicated

� open() checks ACL, creates capability
� Records access rights for this process

� Quick verification on each read(), write()
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Revocation

� Adding rights is easy
� Make the change

� Tell the user “ok, try again now”

� Removing rights is harder
� May be cached, copied, stored
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Revocation Taxonomy

� Immediate/delayed
� How fast?  Can we know when it's safe?

� Selective/global
� Delete some domain's rights?

� Partial/total
� Delete particular rights for a domain?

� Temporary/permanent
� Is there a way to re-add the rights later?
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Revocation Approaches

� Access Control List
� Modify the list

� “Done”
� ...if no cached capabilities

� Capability timeouts
� Must periodically re-acquire (if allowed)
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Revocation Approaches

� Capability check-out list
� Record all holders of a capability

� Run around and delete the right ones

� Indirection table
� Domains point to table entry

� Table entry contains capability

� Invalidate entry to revoke everybody's access
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Revocation Approaches

� Proxy processes
� Give out right to contact an object manager
� Manager applies per-object policy

� “Capability expired”
� “No longer trust Joe”
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Revocation Approaches

� Keyed capabilities
� Object maintains list of active keys

� Give out (key, rights)

� Check “key still valid” per access

� Owner can invalidate individual keys

� Special case: #keys = 1
� Versioned capabilities

� NFS file handles contain inode generation numbers
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Mentioning EROS

� Text mentions Hydra, CAP
� Late 70's, early 80's

� Dead

� EROS (“Extremely Reliable Operating System”)
� UPenn, Johns Hopkins

� Based on commercial GNOSIS/KeyKOS OS

� www.eros-os.org
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EROS Overview

� “Pure capability” system
� “ACLs considered harmful”

� “Pure principle system”
� Don't compromise principle for performance

� Aggressive performance goal
� Domain switch ~100X procedure call

� Unusual approach to bootstrapping problem
� Persistent processes!
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Persistent Processes

� No such thing as reboot
� Processes last “forever” (until exit)
� OS kernel checkpoints system state  to disk

� Memory & registers defined as cache of disk state
� Restart restores system state into hardware
� “Login” reconnects you to your processes
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EROS Objects

� Disk pages
� capabilities: read/write, read-only

� Capability nodes
� Arrays of capabilities

� Numbers
� Protected capability ranges

� “Disk pages 0...16384”

� Process – executable node
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EROS Revocation Stance

� Really revoking access is hard
� The user could have copied the file

� Don't give out real capabilities
� Give out proxy capabilities

� Then revoke however you wish
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EROS Quick Start

� www.eros-os.org/
� reliability/paper.html

� essays/
� capintro.html
� wherefrom.html
� ACLSvCaps.html
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Concept Summary

� Object
� Operations

� Domain
� Switching

� Capabilities
� Revoking

� “Protection” vs. “security”
� Protection is what our sysadmin hopes is happening...


