
1

NFS & AFS

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Today
� NFS, AFS

� Partially covered by textbook: 12.9, 16.6

� Chapter 16 is short, why not just read it?

� Homework 2
� Out later today

� Project 3 interviews
� Later in week, watch for mail

3

Outline

� VFS interception
� NFS & AFS

� Architectural assumptions & goals

� Namespace

� Authentication, access control

� I/O flow

� Rough edges

4

VFS interception

� VFS provides “pluggable” file systems
� Standard flow of remote access

� User process calls read()

� Kernel dispatches to VOP_READ() in some VFS

� nfs_read()
� check local cache
� send RPC to remote NFS server
� put process to sleep

5

VFS interception

� Standard flow of remote access (continued)
� server interaction handled by kernel process

� retransmit if necessary
� convert RPC response to file system buffer
� store in local cache
� wake up user process

� nfs_read()
� copy bytes to user memory

6

NFS Assumptions, goals

� Workgroup file system
� Small number of clients

� Very small number of servers

� Single administrative domain
� All machines agree on “set of users”

� ...which users are in which groups

� Client machines run mostly-trusted OS
� “User #37 says read(...)”

7

NFS Assumptions, goals

� “Stateless” file server
� Files are “state”, but...

� Server exports files without creating extra state
� No list of “who has this file open”
� No “pending transactions” across crash

� Results
� Crash recovery “fast”

� Reboot, let clients figure out what happened

� Protocol “simple”

8

NFS Assumptions, goals

� Some “stateful” operations
� File locking

� (Handled by separate service outside of NFS)

� File removal
� (see below)

� File updating
� Who needs atomicity anyway?

9

AFS Assumptions, goals

� Global distributed file system
� Uncountable clients, servers

� “One AFS”, like “one Internet”
� Why would you want more than one?

� Multiple administrative domains
� username@cellname
� davide@cs.cmu.edu de0u@andrew.cmu.edu

10

AFS Assumptions, goals

� Client machines are un-trusted
� Must prove they act for a specific user

� Secure RPC layer

� Anonymous “system:anyuser”

� Client machines have disks(!!)
� Can cache whole files over long periods

� Write/write and write/read sharing are rare
� Most files updated by one user, on one machine

11

AFS Assumptions, goals

� Support many clients
� 1000 machines could cache a single file

� Some local, some (very) remote

� Goal: O(0) work per client operation
� O(1) may just be too expensive!

12

NFS Namespace

� Constructed by client-side file system mounts
� mount server1:/usr/local /usr/local

� Group of clients can achieve common namespace
� Every machine executes same mount sequence at boot

� If system administrators good

� Auto-mount process based on maps
� /home/dae means server1:/home/dae

� /home/owens means server2:/home/owens

13

NFS Security

� Client machine presents Unix process credentials
� user #, list of group #s

� Server accepts or rejects credentials
� “root squashing”

� map uid=0 to uid=-1 unless client on special machine list

� Kernel process on server “adopts” credentials
� Sets user #, group vector

� Makes system call (e.g., read()) with those credentials

14

AFS Namespace

� Assumed-global list of AFS cells
� Everybody sees same files in each cell

� Multiple servers inside cell invisible to user

� Group of clients can achieve private namespace
� Use custom cell database

15

AFS Security

� Client machine presents Kerberos ticket
� Arbitrary binding of (machine,user) to

(realm,principal)
� davide on a cs.cmu.edu machine can be

de0u@andrew.cmu.edu

� Server checks against access control list

16

AFS ACLs

� Apply to directory, not to file
� Format

� de0u rlidwka

� davide@cs.cmu.edu rl

� de0u:friends rl

� Negative rights
� Disallow “joe rl” even though joe is in de0u:friends

17

NFS protocol architecture

� root@client executes mount RPC
� returns “file handle” for root of remote file system

� RPC for each pathname component
� /usr/local/lib/emacs/foo.el

� h = lookup(root-handle, “lib”)
� h = lookup(h, “emacs”)
� h = lookup(h, “foo.el”)

� Allows disagreement over pathname syntax
� Look, Ma, no “/”!

18

NFS protocol architecture

� I/O RPCs are idempotent
� multiple repetitions have same effect as one

� lookup(h, “emacs”)

� read(file-handle, offset, length)

� write(file-handle, offset, buffer)

� RPCs do not create server-memory state
� no open()/close() RPC

� write() succeeds (to disk) or fails before RPC
completes

19

NFS file handles

� Goals
� Reasonable size for client to store

� Server can quickly map file handle to file

� “Hard” to forge

� Implementation
� inode # - small, fast for server

� “inode generation #” - random, stored in inode

� Survives server reboots! Trivial to snoop!

20

NFS Directory Operations

� Primary goal
� Insulate clients from server directory format

� Approach
� readdir(dir-handle, cookie, nbytes) returns list of

� name, inode #, cookie
� name, inode #, cookie

� inode # is just for “ls -l”, doesn't give you access

� Cookies are opaque cursor positions in directory

21

AFS protocol architecture

� Volume = miniature file system
� One user's files, project source tree, ...

� Directory tree
� Mount points are pointers to other volumes

� Unit of disk quota administration, backup

� Client machine has Cell-Server Database
� /afs/andrew.cmu.edu is a cell
� protection server handles authentication

� volume location server maps volumes to servers

22

AFS protocol architecture

� Volume location is dynamic
� Moved between servers transparently to user

� Volumes may have multiple replicas
� Increase throughput, reliability

� Restricted to “read-only” volumes
� /usr/local/bin
� /afs/andrew.cmu.edu/usr

23

AFS Callbacks

� Observations
� Client disks can cache files indefinitely

� Even across reboots

� Many files nearly read-only
� Contacting server on each open() is wasteful

� Server issues callback promise
� If this file changes in 15 minutes, I will tell you

� callback break message

� 15 minutes of free open(), read()

24

AFS file identifiers

� Volume number
� Each file lives in a volume
� Unlike NFS “server1's /usr0”

� File number
� inode # (as NFS)

� Uniquifier
� allows inodes to be re-used

� Similar to NFS file handle inode generation #s

25

AFS Directory Operations

� Primary goal
� Don't overload servers!

� Approach
� Server stores directory as hash table on disk

� Client fetches whole directory as if a file

� Client parses hash table
� Directory maps name to fid

� Client caches directory (indefinitely, across reboots)
� Server load reduced

26

AFS access pattern

� open(“/afs/andrew.cmu.edu/service/systypes”, ...)
� VFS layer hands off /afs to AFS client module
� Client maps andrew.cmu.edu to pt & vldb servers
� Client authenticates to pt server
� Client locates root.cell volume
� Client fetches “/” directory
� Client fetches “service” directory
� Client fetches “systypes” file

27

AFS access pattern

� open(“/afs/andrew.cmu.edu/service/newCSDB”)
� VFS layer hands off /afs to AFS client module
� Client fetches “newCSDB” file (no other RPC)

28

AFS access pattern

� open(“/afs/andrew.cmu.edu/service/systypes”)
� Assume

� File is in cache
� Server hasn't broken callback
� Callback hasn't expired

� Client can read file with no server interaction

29

AFS access pattern

� Data transfer is by chunks
� Minimally 64 KB

� May be whole-file

� Writeback cache
� Opposite of NFS “every write is sacred”

� Store chunk back to server
� When cache overflows
� On last user close()

� ...or don't (if client machine crashes)

30

AFS access pattern

� Is writeback crazy?
� Write conflicts “assumed rare”

� Who wants to see a half-written file?

31

NFS “rough edges”

� Locking
� Inherently stateful

� lock must persist across client calls
� lock(), read(), write(), unlock()

� “Separate service”
� Handled by same server
� Horrible things happen on server crash
� Horrible things happen on client crash

32

NFS “rough edges”

� Some operations not really idempotent
� unlink(file) returns “ok” once, then “no such file”

� server caches “a few” client requests

� Cacheing
� No real consistency guarantees

� Clients typically cache attributes, data “for a while”

� No way to know when they're wrong

33

NFS “rough edges”

� Large NFS installations are brittle
� Everybody must agree on many mount points

� Hard to load-balance files among servers
� No volumes
� No atomic moves

� Cross-realm NFS access basically nonexistent
� No good way to map uid#47 from an unknown host

34

AFS “rough edges”

� Locking
� Server refuses to keep a waiting-client list

� Client cache manager refuses to poll server

� User program must invent polling strategy

� Chunk-based I/O
� No real consistency guarantees

� close() failures surprising to many Unix programs
� ...and to early Linux kernels!

35

AFS “rough edges”

� ACLs apply to directories
� “Makes sense” if files will inherit from directories

� Not always true

� Confuses users

� Directories inherit ACLs
� Easy to expose a whole tree accidentally

� What else to do?
� No good solution known
� DFS horror

36

AFS “rough edges”

� Small AFS installations are punitive
� Step 1: Install Kerberos

� 2-3 servers
� Inside locked boxes!

� Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb)

� Step 3: Explain Kerberos to your users
� Ticket expiration!

� Step 4: Explain ACLs to your users

37

Summary - NFS

� Workgroup network file service
� Any Unix machine can be a server (easily)
� Machines can be both client & server

� My files on my disk, your files on your disk

� Everybody in group can access all files

� Serious trust, scaling problems
� “Stateless file server” model only partial success

38

Summary – AFS

� Worldwide file system
� Good security, scaling
� Global namespace
� “Professional” server infrastructure per cell

� Don't try this at home

� Only ~190 AFS cells (2003-02)
� 8 are cmu.edu, 14 are in Pittsburgh

� “No write conflict” model only partial success

39

Summary

� Two “distributed file systems”
� Different design goals
� Mostly non-overlapping implementations
� Mostly non-overlapping failure modes

