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Synchronization

� Exam will be closed-book
� But you may bring a 1-sided 8.5x11 sheet of notes

� 6 point font or larger :-)

� Weakly non-cumulative
� Emphasis on new material, design questions
� You will need to use some “old” knowledge
� We didn't really test on “P2 knowledge” (nor P3)
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Synchronization

� About today's review
� Mentioning key concepts

� Not exhaustive coverage

� Reading some of the textbook is advisable!

� Faculty evaluation forms
� SCS Facilities summer jobs
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Read Your Code

� Re-read your P2
� Re-read your P3
� Go over feedback
� Talk about them with your partner

� Schedule a time

� You should understand “the hard parts”
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Core “Phase I” concepts

� Process model
� You should be a memory-map expert

� Kernel space, user space, virtual memory

� Process vs. thread

� Exactly what goes on a stack, where it comes from...

� Mutual exclusion
� mutex, cvar, what's inside, why

� Concurrency
� Deadlock
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IPC

� Communicating process on one machine
� Naming

� Name server?

� File system?

� Message structure
� Sender id, priority, type

� Capabilities: memory region, IPC rights

� Synchronization/queueing/blocking
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IPC

� Group receive
� Copy/share/transfer
� A Unix surprise

� sendmsg()/recvmsg() pass file descriptors!
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RPC Overview

� RPC = Remote Procedure Call
� Extends IPC in two ways

� IPC = Inter-Process Communication
� OS-level: bytes, not objects

� IPC restricted to single machine

� Marshalling
� Server location
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RPC Overview

� Call semantics
� Asynch? Batch? Net/server failure?

� Client flow, server flow
� Stub routines, dispatch skeleton

� Java RMI
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Marshalling

� Values must cross the network
� Machine formats differ

� Integer byte order
� www.scieng.com/ByteOrder.PDF 

� Floating point format
� IEEE 754 or not

� Memory packing/alignment issues
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Marshalling

� Define a “network format”
� ASN.1 - “self-describing” via in-line tags

� XDR – not

� “Serialize” language-level object to byte stream
� Rules typically recursive

� Serialize a struct by serializing its fields in order

� Implementation probably should not be
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Marshalling

� Issues
� Some types don't translate well

� Ada has ranged integers, e.g., 44..59
� Not everybody really likes 64-bit ints
� Floating point formats are religious issues

� Performance!
� Memory speed� ÿ� network speed

� The dreaded “pointer problem”
� See lecture notes
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File System Interface

� Abstraction of disk/tape storage
� Records, not sectors

� Type information

� Naming
� Directory tree

� Complexity due to linking

� Soft vs. hard links
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File System Interface

� Mounting
� Ownership, permissions
� Semantics of multiple open()s
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Operations on Files

� Create – locate space, enter into directory
� Write, Read – according to position pointer
� Seek – adjust position pointer
� Delete – remove from directory, release space
� Truncate

� Trim data from end

� Often all of it

� Append, Rename
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File System Layers

� Device drivers
� read/write(disk, start-sector, count)

� Block I/O
� read/write(partition, block) [cached]

� File I/O
� read/write(file, block)

� File system
� manage directories, free space, mounting



17

Disk Structures

� Boot area (first block/track/cylinder)
� File system control block

� Key parameters: #blocks, metadata layout

� Unix: superblock

� Directories
� “File control block” (Unix: inode)

� ownership/permissions

� data location
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Memory Structures

� In-memory partition tables
� Cached directory information
� System-wide open-file table

� In-memory file control blocks

� Process open-file tables
� Open mode (read/write/append/...)

� “Cursor” (read/write position)
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VFS layer

� Goal
� Allow one machine to use multiple file system types

� Unix FFS
� MS-DOS FAT
� CD-ROM ISO9660
� Remote/distributed: NFS/AFS

� Standard system calls should work transparently

� Solution
� Insert a level of indirection!
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VFS layer – file system operations

struct vfsops {
  char *name;
  int (*vfs_mount)(); 
  int (*vfs_statfs)();
  int (*vfs_vget)();
  int (*vfs_unmount)();
  ...
}
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Directories

� External interface
� vnode = lookup(vnode, name)

� Traditional Unix FFS
� List of (name,inode #) - not sorted

� Names are variable-length

� Lookup is linear
� How long does it take to delete N files?

� Common alternative: hash-table directories
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Allocation - FAT
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Unix Index Blocks
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Cache tricks

� Read-ahead
for (i = 0; i < filesize; ++i)
  putc(getc(infile), outfile);
� System observes sequential reads

� can pipeline reads to overlap “computation”, read latency

� Free-behind
� Discard buffer from cache when next is requested

� Good for large files

� “Anti-LRU”
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Recovery

� System crash...now what?
� Some RAM contents were lost

� Free-space list on disk may be wrong

� Scan file system
� Check invariants

� Unreferenced files
� Double-allocated blocks
� Unallocated blocks

� Fix problems
� Expert user???
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NFS & AFS

� VFS interception
� NFS & AFS

� Architectural assumptions & goals

� Namespace

� Authentication, access control

� I/O flow

� Rough idea of rough edges
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NFS Assumptions, goals

� Workgroup file system
� Small number of clients

� Very small number of servers

� Single administrative domain
� All machines agree on “set of users”

� ...which users are in which groups

� Client machines run mostly-trusted OS
� “User #37 says read(...)”
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NFS Assumptions, goals

� “Stateless” file server
� Files are “state”, but...

� Server exports files without creating extra state
� No list of “who has this file open”
� No “pending transactions” across crash

� Result: crash recovery “fast”, protocol “simple”

� Some “stateful” operations
� File locking

� Handled by separate service outside of NFS
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AFS Assumptions, goals

� Global distributed file system
� Uncountable clients, servers

� “One AFS”, like “one Internet”
� Why would you want more than one?

� Multiple administrative domains
� username@cellname
� davide@cs.cmu.edu de0u@andrew.cmu.edu
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AFS Assumptions, goals

� Client machines are un-trusted
� Must prove they act for a specific user

� Secure RPC layer

� Anonymous “system:anyuser”

� Client machines have disks
� Can cache whole files over long periods

� Write/write and write/read sharing are rare
� Most files updated by one user, on one machine
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AFS Assumptions, goals

� Support many clients
� 1000 machines could cache a single file

� Some local, some (very) remote
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AFS Callbacks

� Observations
� Client disks can cache files indefinitely

� Even across reboots

� Many files nearly read-only
� Contacting server on each open() is wasteful

� Server issues callback promise
� If this file changes in 15 minutes, I will tell you

� callback break message

� 15 minutes of free open(), read()
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Disk scheduling

� Spinning platter/waving arm model
� Seek time vs. rotational latency
� FCFS, SSTF, SCAN, LOOK, C-SCAN, C-

LOOK, SPTF, WSPTF
� Fairness, mean response time, variance, 

starvation
� Freeblock scheduling

� Concept
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Disk Array Overview

� Historical practices
� Striping, mirroring

� The reliability problem

� More disks ⇒ frequent array failures

� Cannot tolerate 1/N reliability

� Parity, ECC, why parity is enough
� Erasure channels

� Good terminology to display at parties
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Disk Array Overview

� RAID “levels” (really: flavors)
� Understand RAID 0, 1, 4 vs. 5

� What they're good for, why
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Protection Overview

� Protection vs. Security
� Inside vs. outside “the box”

� Objects, operations, domains
� Access control (least privilege)
� 3 domain models
� Domain switch (setuid example)
� Multics ring architecture
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Protection Overview

� Access Matrix
� Concept and real-world approaches

� “Capability revocation is hard, let's go shopping”
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Security Overview

� Goals & threats
� Authentication (impersonation)

� Secrecy (theft, eavesdropping)

� Integrity (cracking)

� Signature (repudiation)

� TEMPEST (and low-tech snooping)
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Security Overview

� Malware
� Trojans, trapdoors

� Buffer overflow

� Viruses, worms

� Password files, salt
� What is the threat, how does the technique help

� Biometrics vs. cheating
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Security Overview

� “Understand cryptography”
� What secure hashing is good for

� One-time pad

� Symmetric (private-key) crypto

� Asymmetric (public-key) crypto
� Has private keys and public keys

� Kerberos
� Symmetric crypto
� Central server avoids the n2 problem
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Preparation Suggestions

� Sleep well (two nights)
� Scan lecture notes
� Read any skipped textbook sections

� Well, the most-important ones, anyway

� Understand the code you turned in
� Even what your partner wrote

� What are the hard issues, why?
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Preparation Suggestions

� Prepare a sheet of notes
� Read comp.risks & Effective Java

� Ok, after the exam will suffice

� Don't panic!
� Budget time wisely during exam

� (don't get bogged down)
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15-410 on One Slide

� What a process/thread really is
� (the novel version, not the fairy tale)

� Concurrency & synchronization
� Issues, mechanisms, hazards

� How the pieces of hardware fit together
� A sense of “what's out there” beyond the kernel
� Skills for non-small software artifacts

� Design, debugging, partnering

� Documenting, source control


