
1

Review 2

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Exam will be closed-book
� But you may bring a 1-sided 8.5x11 sheet of notes

� 6 point font or larger :-)

� Weakly non-cumulative
� Emphasis on new material, design questions
� You will need to use some “old” knowledge
� We didn't really test on “P2 knowledge” (nor P3)

3

Synchronization

� About today's review
� Mentioning key concepts

� Not exhaustive coverage

� Reading some of the textbook is advisable!

� Faculty evaluation forms
� SCS Facilities summer jobs

4

Read Your Code

� Re-read your P2
� Re-read your P3
� Go over feedback
� Talk about them with your partner

� Schedule a time

� You should understand “the hard parts”

5

Core “Phase I” concepts

� Process model
� You should be a memory-map expert

� Kernel space, user space, virtual memory

� Process vs. thread

� Exactly what goes on a stack, where it comes from...

� Mutual exclusion
� mutex, cvar, what's inside, why

� Concurrency
� Deadlock

6

IPC

� Communicating process on one machine
� Naming

� Name server?

� File system?

� Message structure
� Sender id, priority, type

� Capabilities: memory region, IPC rights

� Synchronization/queueing/blocking

7

IPC

� Group receive
� Copy/share/transfer
� A Unix surprise

� sendmsg()/recvmsg() pass file descriptors!

8

RPC Overview

� RPC = Remote Procedure Call
� Extends IPC in two ways

� IPC = Inter-Process Communication
� OS-level: bytes, not objects

� IPC restricted to single machine

� Marshalling
� Server location

9

RPC Overview

� Call semantics
� Asynch? Batch? Net/server failure?

� Client flow, server flow
� Stub routines, dispatch skeleton

� Java RMI

10

Marshalling

� Values must cross the network
� Machine formats differ

� Integer byte order
� www.scieng.com/ByteOrder.PDF

� Floating point format
� IEEE 754 or not

� Memory packing/alignment issues

11

Marshalling

� Define a “network format”
� ASN.1 - “self-describing” via in-line tags

� XDR – not

� “Serialize” language-level object to byte stream
� Rules typically recursive

� Serialize a struct by serializing its fields in order

� Implementation probably should not be

12

Marshalling

� Issues
� Some types don't translate well

� Ada has ranged integers, e.g., 44..59
� Not everybody really likes 64-bit ints
� Floating point formats are religious issues

� Performance!
� Memory speed� ÿ� network speed

� The dreaded “pointer problem”
� See lecture notes

13

File System Interface

� Abstraction of disk/tape storage
� Records, not sectors

� Type information

� Naming
� Directory tree

� Complexity due to linking

� Soft vs. hard links

14

File System Interface

� Mounting
� Ownership, permissions
� Semantics of multiple open()s

15

Operations on Files

� Create – locate space, enter into directory
� Write, Read – according to position pointer
� Seek – adjust position pointer
� Delete – remove from directory, release space
� Truncate

� Trim data from end

� Often all of it

� Append, Rename

16

File System Layers

� Device drivers
� read/write(disk, start-sector, count)

� Block I/O
� read/write(partition, block) [cached]

� File I/O
� read/write(file, block)

� File system
� manage directories, free space, mounting

17

Disk Structures

� Boot area (first block/track/cylinder)
� File system control block

� Key parameters: #blocks, metadata layout

� Unix: superblock

� Directories
� “File control block” (Unix: inode)

� ownership/permissions

� data location

18

Memory Structures

� In-memory partition tables
� Cached directory information
� System-wide open-file table

� In-memory file control blocks

� Process open-file tables
� Open mode (read/write/append/...)

� “Cursor” (read/write position)

19

VFS layer

� Goal
� Allow one machine to use multiple file system types

� Unix FFS
� MS-DOS FAT
� CD-ROM ISO9660
� Remote/distributed: NFS/AFS

� Standard system calls should work transparently

� Solution
� Insert a level of indirection!

20

VFS layer – file system operations

struct vfsops {
 char *name;
 int (*vfs_mount)();
 int (*vfs_statfs)();
 int (*vfs_vget)();
 int (*vfs_unmount)();
 ...
}

21

Directories

� External interface
� vnode = lookup(vnode, name)

� Traditional Unix FFS
� List of (name,inode #) - not sorted

� Names are variable-length

� Lookup is linear
� How long does it take to delete N files?

� Common alternative: hash-table directories

22

Allocation - FAT

-1

-1

0

-1

3

5

2

7

hello.java

dir.c

0

1

sys.ini 4

23

Unix Index Blocks

106

105

501

502

102
101

16
15

18
17

500
100

1000 104
103

20
19

22
21

24
23

26
25

28
27

30
29

32
31

24

Cache tricks

� Read-ahead
for (i = 0; i < filesize; ++i)
 putc(getc(infile), outfile);
� System observes sequential reads

� can pipeline reads to overlap “computation”, read latency

� Free-behind
� Discard buffer from cache when next is requested

� Good for large files

� “Anti-LRU”

25

Recovery

� System crash...now what?
� Some RAM contents were lost

� Free-space list on disk may be wrong

� Scan file system
� Check invariants

� Unreferenced files
� Double-allocated blocks
� Unallocated blocks

� Fix problems
� Expert user???

26

NFS & AFS

� VFS interception
� NFS & AFS

� Architectural assumptions & goals

� Namespace

� Authentication, access control

� I/O flow

� Rough idea of rough edges

27

NFS Assumptions, goals

� Workgroup file system
� Small number of clients

� Very small number of servers

� Single administrative domain
� All machines agree on “set of users”

� ...which users are in which groups

� Client machines run mostly-trusted OS
� “User #37 says read(...)”

28

NFS Assumptions, goals

� “Stateless” file server
� Files are “state”, but...

� Server exports files without creating extra state
� No list of “who has this file open”
� No “pending transactions” across crash

� Result: crash recovery “fast”, protocol “simple”

� Some “stateful” operations
� File locking

� Handled by separate service outside of NFS

29

AFS Assumptions, goals

� Global distributed file system
� Uncountable clients, servers

� “One AFS”, like “one Internet”
� Why would you want more than one?

� Multiple administrative domains
� username@cellname
� davide@cs.cmu.edu de0u@andrew.cmu.edu

30

AFS Assumptions, goals

� Client machines are un-trusted
� Must prove they act for a specific user

� Secure RPC layer

� Anonymous “system:anyuser”

� Client machines have disks
� Can cache whole files over long periods

� Write/write and write/read sharing are rare
� Most files updated by one user, on one machine

31

AFS Assumptions, goals

� Support many clients
� 1000 machines could cache a single file

� Some local, some (very) remote

32

AFS Callbacks

� Observations
� Client disks can cache files indefinitely

� Even across reboots

� Many files nearly read-only
� Contacting server on each open() is wasteful

� Server issues callback promise
� If this file changes in 15 minutes, I will tell you

� callback break message

� 15 minutes of free open(), read()

33

Disk scheduling

� Spinning platter/waving arm model
� Seek time vs. rotational latency
� FCFS, SSTF, SCAN, LOOK, C-SCAN, C-

LOOK, SPTF, WSPTF
� Fairness, mean response time, variance,

starvation
� Freeblock scheduling

� Concept

34

Disk Array Overview

� Historical practices
� Striping, mirroring

� The reliability problem

� More disks ⇒ frequent array failures

� Cannot tolerate 1/N reliability

� Parity, ECC, why parity is enough
� Erasure channels

� Good terminology to display at parties

35

Disk Array Overview

� RAID “levels” (really: flavors)
� Understand RAID 0, 1, 4 vs. 5

� What they're good for, why

36

Protection Overview

� Protection vs. Security
� Inside vs. outside “the box”

� Objects, operations, domains
� Access control (least privilege)
� 3 domain models
� Domain switch (setuid example)
� Multics ring architecture

37

Protection Overview

� Access Matrix
� Concept and real-world approaches

� “Capability revocation is hard, let's go shopping”

38

Security Overview

� Goals & threats
� Authentication (impersonation)

� Secrecy (theft, eavesdropping)

� Integrity (cracking)

� Signature (repudiation)

� TEMPEST (and low-tech snooping)

39

Security Overview

� Malware
� Trojans, trapdoors

� Buffer overflow

� Viruses, worms

� Password files, salt
� What is the threat, how does the technique help

� Biometrics vs. cheating

40

Security Overview

� “Understand cryptography”
� What secure hashing is good for

� One-time pad

� Symmetric (private-key) crypto

� Asymmetric (public-key) crypto
� Has private keys and public keys

� Kerberos
� Symmetric crypto
� Central server avoids the n2 problem

41

Preparation Suggestions

� Sleep well (two nights)
� Scan lecture notes
� Read any skipped textbook sections

� Well, the most-important ones, anyway

� Understand the code you turned in
� Even what your partner wrote

� What are the hard issues, why?

42

Preparation Suggestions

� Prepare a sheet of notes
� Read comp.risks & Effective Java

� Ok, after the exam will suffice

� Don't panic!
� Budget time wisely during exam

� (don't get bogged down)

43

15-410 on One Slide

� What a process/thread really is
� (the novel version, not the fairy tale)

� Concurrency & synchronization
� Issues, mechanisms, hazards

� How the pieces of hardware fit together
� A sense of “what's out there” beyond the kernel
� Skills for non-small software artifacts

� Design, debugging, partnering

� Documenting, source control

