Review 2

Dave Eckhardt
deQu@andrew.cmu.edu



Synchronization

e Exam will be closed-book

- But you may bring a 1-sided 8.5x11 sheet of notes
* 6 point font or larger :-)
- Weaklynon-cumulative

* Emphasis on new material, design questions
* You will need to use some “old” knowledge
* We didn't really test on “P2 knowledge” (nor P3)



Synchronization

* About today's review

- Mentioning key concepts
- Not exhaustive coverage
- Readingsomeof the textbook Is advisable!

* Faculty evaluation forms
e SCS Facillities summer jobs



Read Your Code

* Re-read your P2

* Re-read your P3
e Go over feedback

* Talk about them with your partner
- Schedule a time
* You should understand “the hard parts”



Core “Phase I” concepts

Process model

- You should be a memory-mappert
e Kernel space, user space, virtual memory
- Process vs. thread

- Exactly what goes on a stack, where it comes from...
Mutual exclusion

- mutex, cvar, what's inside, why

Concurrency

Deadlock



IPC

e Communicating process on one machine
* Naming
- Name server?
- File system?
* Message structure
- Sender id, priority, type
— Capabilities: memory region, IPC rights
* Synchronization/queueing/blocking



IPC

* Group receive
* Copy/share/transfer

* A Unix surprise
- sendmsg()/recvmsg() pass file descriptors!



RPC Overview

RPC = Remote Procedure Call
Extends IPC in two ways

- |PC = Inter-Process Communication
* OS-level: bytes, not objects
- |IPC restricted to single machine

Marshalling
Server location



RPC Overview

e Call semantics
- Asynch? Batch? Net/server failure?
e Client flow, server flow

— Stub routines, dispatch skeleton
e Java RMI



Marshalling

e VValues must cross the network

e Machine formats differ

- Integer byte order
* www.scieng.com/ByteOrder.PDF
- Floating point format
* [IEEE 754 or not
- Memory packing/alignment issues

10



Marshalling

* Define a “network format”
- ASN.1 - “self-describing” via in-line tags
- XDR — not
e “Serialize” language-level object to byte stream

- Rules typically recursive
* Serialize a struct by serializing its fields in order
- Implementation probably shouiobt be

11



Marshalling

e |Sssues

- Some types don't translate well

* Ada has ranged integers, e.g., 44..59
* Not everybody really likes 64-bit ints
* Floating point formats are religious issues

- Performance!
* Memory speed= network speed

- The dreaded “pointer problem”
e See lecture notes

12



File System Interface

* Abstraction of disk/tape storage
- Records, not sectors
- Type information

* Naming
- Directory tree

- Complexity due to linking
- Soft vs. hard links

13



File System Interface

* Mounting
* Ownership, permissions
e Semantics of multiple open()s

14



Operations on Files

* Create — locate space, enter into directory

* Write, Read — according to position pointer

* Seek — adjust position pointer

* Delete — remove from directory, release space

e Truncate

— Trim data from end
— Often all of it

* Append, Rename

15



File System Layers

Device drivers

- read/write(disk, start-sector, count)
Block 1/O

- read/write(partition, block) [cached]
File 1/0O

- read/write(file, block)

File system

- manage directories, free space, mounting

16



Disk Structures

Boot area (first block/track/cylinder)
File system control block

- Key parameters: #blocks, metadata layout
— Unix: superblock

Directories
“File control block™ (Unix: inode)

- ownership/permissions
- data location

17



Memory Structures

* [n-memory partition tables

e Cached directory information

e System-wide open-file table
- In-memory file control blocks

* Process open-file tables

- Open mode (read/write/append/...)
- “Cursor” (read/write position)

18



VES layer

e Goal

- Allow one machine to use multiple file systéymes

e Unix FFS

* MS-DOS FAT

e CD-ROM 1509660
 Remote/distributed: NFS/AFS

- Standard system calls should work transparently
e Solution

— Insert a level of indirection!

19



VES layer — file system operations

struct vfsops {
char *name;
Int (*vfs_mount)();
Int (*vfs_statfs)();
Int (*vfs_vget)();
Int (*vfs_unmount)();

20



Directories

e External interface

- vhode = lookup(vnode, name)
e Traditional Unix FFS

- List of (name,inode #) - not sorted
- Names are variable-length

— Lookup is linear
* How long does it take to delete N files?

e Common alternative: hash-table directories

21



Allocation - FAT

22



15

16

19

21

Unix Index Blocks

25

17

18
@'r

1000=p-

22

26

27

28

29

30

31

32

23



Cache tricks

 Read-ahead
for (1= 0; 1 < filesize; ++1)
putc(getc(infile), outfile);
- System observes sequential reads

e can pipeline reads to overlap “computation”, read latency

e Free-behind

- Discard buffer from cache when next is requested
- Good for large files
- “Anti-LRU”

24



Recovery

e System crash...now what?

- Some RAM contents were lost
- Free-space list on disk may be wrong

- Scan file system

e Check invariants

- Unreferenced files
- Double-allocated blocks
— Unallocated blocks

* Fix problems
- Expert user???

25



NFS & AFS

* VES interception

* NFS & AFS

- Architectural assumptions & goals
- Namespace

- Authentication, access control

- 1/O flow

- Rough idea of rough edges

26



NFS Assumptions, goals

* Workgroup file system

- Small number of clients
- Very small number of servers

* Single administrative domain

- All machines agree on “set of users”
e ...which users are in which groups

— Client machines run mostly-trusted OS
e “User #37 says read(...)"

27



NFS Assumptions, goals

e “Stateless” file server

- Files are “state”, but...

- Serverexporisfiles without creating extra state

* No list of “who has this file open”
* No “pending transactions” across crash

- Result: crash recovery “fast”, protocol “simple”
e Some “stateful” operations

- File locking
- Handled by separate service outside of NFS

28



AFS Assumptions, goals

* Global distributed file system

— Uncountable clients, servers

- “One AFS”, like “one Internet”
* Why would you want more than one?

* Multiple administrative domains

— usernamevcellname
- davide@cs.cmu.edu deOu@andrew.cmu.edu

29



AFS Assumptions, goals

e Client machines are un-trusted

- Must provethey act for a specific user
e Secure RPC layer
- Anonymous “system:anyuser”

* Client machines have disks
- Can cache whole files over long periods
* Write/write and write/read sharing are rare
- Most files updated by one user, on one machine

30



AFS Assumptions, goals

* Supportmanyclients

- 1000 machines could cache a single file
- Some local, some (very) remote

31



AFS Callbacks

e Observations

- Client disks can cache files indefinitely
* Even across reboots
- Many files nearly read-only
e Contacting server on each open() is wasteful

* Server issuesallback promise
- If this file changes in 15 minutes, | will tell you

* callback breakmessage
- 15 minutes of free open(), read()

32



Disk scheduling

Spinning platter/waving arm model
Seek time vs. rotational latency

FCFS, SSTF, SCAN, LOOK, C-SCAN, C-
LOOK, SPTF, WSPTF

Fairness, mean response time, variance,
starvation

Freeblock scheduling
- Concept

33



Disk Array Overview

e Historical practices
- Striping, mirroring

* The reliability problem
- More disksl] frequentarray failures
- Cannottolerate 1/N reliability

e Parity, ECC, why parity is enough

- Erasure channels
* Good terminology to display at parties

34



Disk Array Overview

* RAID “levels” (really: flavors)

- Understand RAID 0, 1,4 vs. 5
- What they're good for, why

35



Protection Overview

* Protection vs. Security
- Inside vs. outside “the box”
* Objects, operations, domains

* Access controfleast privilege)

3 domain models

* Domain switch (setuid example)
e Multics ring architecture

36



Protection Overview

* Access Matrix
— Concept and real-world approaches
e “Capability revocation is hard, let's go shopping”

37



Security Overview

e Goals & threats

- Authentication (impersonation)
- Secrecy (theft, eavesdropping)
- Integrity (cracking)
— Signature (repudiation)
* TEMPEST (and low-tech snooping)

38



Security Overview

e Malware

- Trojans, trapdoors
- Buffer overflow
- Viruses, worms
* Password files, salt
- What Is the threat, how does the technique help

* Biometrics vs. cheating

39



Security Overview

e “Understand cryptography”

- Whatsecurehashing is good for

- One-time pad

- Symmetric (private-key) crypto

- Asymmetric (public-key) crypto
e Has private keys and public keys

— Kerberos

e Symmetric crypto
 Central server avoids thé problem

40



Preparation Suggestions

* Sleep well {wo nights)
e Scan lecture notes
* Read any skipped textbook sections

- Well, the most-important ones, anyway
* Understand the code you turned In

- Even what your partner wrote
- What are the hard issues, why?

41



Preparation Suggestions

* Prepare a sheet of notes
* Read comp.risks & Effective Java

- Ok, after the exam will suffice
* Don't panic!
- Budget time wisely during exam
* (don't get bogged down)

42



15-410 on One Slide

* What a process/threadally is
- (the novel version, not the fairy tale)
e Concurrency & synchronization
- Issues, mechanismisazards
* How the pieces of hardware fit together

* A sense of “what's out there” beyond the kernel

e Skills for non-small software artifacts

- Design, debugging, partnering

- Documenting, source control 43



