
Project 2 : User Level Thread Library
15-410 Operating Systems

September 19, 2003

1 Overview

An important aspect of operating system design is organizing tasks that run concurrently and
share memory. Concurrency concerns are paramount when designing multi-threaded programs
that share some critical resource, be it some device or piece of memory. In this project you
will write a thread library and concurrency primitives. This document provides the background
information and specification for writing the thread library, and concurrency primitives.

We will provide you with a miniature operating system kernel (called “Pebbles”) which
implements a minimal set of system calls, and some multi-threaded programs. These programs
will be linked against your thread library, stored on a “RAM disk”, and then run under the
supervision of the Pebbles kernel.

The thread library will be based on the provided minclone() system call, which will be
described later. The basic features of a user level thread library will be will be implemented,
including the ability to join threads.

The concurrency primitives will be based on the XCHG instruction for atomically exchanging
registers and memory or registers and registers. With this instruction you will implement mutexes
and condition variables.

2 Goals

• Becoming familiar with the ways in which operating systems support user libraries by
providing system calls to create processes, affect scheduling, etc.

• Becoming familiar with programs that involve a high level of concurrency, and the sharing
of critical resources, including the tools that are used to deal with these issues.

• Developing skills necessary to produce a substantial amount of code, such as organization
and project planning.

• Working with a partner is also an important aspect of this project. You will be working
with a partner on subsequent projects, so it is important to be familiar with scheduling
time to work, a preferred working environment, and developing a good group dynamic
before beginning larger projects.

• Coming to understand the dynamics of source control in a group context, e.g., when to
branch and merge.

3 Important Dates

Wednesday, September 17th Project 2 begins

1

Wednesday, September 24th You should have thread creation, mutexes, and condition
variables working well.

Wednesday, October 1st Project 2 due at 23:59:59

4 User Execution Environment

Pebbles supports multiple independent processes, which do not share memory. Each process
contains several memory regions. From lowest memory address to highest, they are:

• A read-only code region containing machine instructions

• A data region containing some variables. Part of the data region is derived from an
executable program file, but the process may ask the operating system to increase the
size of the data region. If the operating system is willing to do this, new pages of memory
are added to the top of the data region.

• A stack region containing a mixture of variables and procedure call return information. The
stack begins at some “large” address and grows downward toward the top of the data region.
Of course, if they collide, disaster will result.

The boundary between the top of the data region and the “memory hole” (which reaches to
the bottom of the stack region) is called, in homage to the Unix tradition, “the break.” The break
is a pointer to the smallest memory address in the hole, so growing the data region and increasing
the break are by definition equivalent (see brk() below).

Pebbles allows one process to create another though the use of the fork and exec system
calls, which you will not use for Project 2 (the shell program which we provide so you can launch
your test programs does use them).

In addition, Pebbles allows a process to create “clones,” processes which share the entire
memory space of their parent (and siblings). Once a process has created one or more clones, the
effect is that there are multiple schedulable register sets sharing one set of memory resources.
A carefully designed set of cooperating library routines can leverage this feature to provide a
simplified version of POSIX “pthreads.”

5 The System Call Interface

While the kernel provides system calls for your use, It does not provide a “C library” which
accesses those calls. You will need to begin your implementation by writing an assembly code
“wrapper” or “stub” for each system call (well, all but one, see below). Stub routines should be
one per file and you should arrange that the Makefile infrastructure you are given will build them
into libsyscall.a (see the README file in the tarball).

To invoke a system call, the following protocol is followed. If the system call takes one 32-
bit parameter, it is placed in the %esi register. Then the appropriate interrupt, as defined in
syscall nums.h, is raised via the INT x instruction (each system call has been assigned its own
INT instruction, hence its own value of x)). If the system call expects more than one 32-bit
parameter, you should construct a “system call packet” containing the parameters and place the
address of the packet in %esi. In C you would create a structure like this:

2

struct read_line_parms {
int len;
char *buf;

} rlp;

After filling in the struct, you would arrange for &rlp to be placed in %esi. When the system
call completes, the return value, if any, will be available in the %eax register.

Please remember that %esi and %edi are “callee-saved” registers according to the C run-time
calling convention in use by gcc. This means that the C function which called your stub routine
did so with the expectation that %esi and %edi would not be modified. If you use either of those
registers in your assembly code, you will probably need to save them to and restore them from
the stack each time.

5.1 Provided System Calls

The kernel provides the following system calls to support your library. You must use the following
naming convention, declared for you in user/lib/inc/syscall.h, when writing your system call
stubs, so our test programs can call your stubs.

Unless otherwise noted, system calls return zero on success and an error code less than zero
if something goes wrong.

• int yield(int pid) - Defers execution of the calling process to a time determined by the
scheduler, in favor of the process with process ID pid. If pid is -1, the caller is not expressing
a preference for which process should run next. The only processes whose scheduling should
be affected by yield() are the calling process, and the process that is yield()ed to. If the
process with process ID pid is not runnable, or doesn’t exist, then an integer error code less
than zero is returned. Zero is returned on success.

• int deschedule(int *reject) - Examines the integer pointed to by reject. If the
integer is non-zero, the call returns immediately with return value zero. If the integer
pointed to by reject is zero, then the calling process will be suspended (not run by the
scheduler) until some other process makes a call to make runnable() on the process that
called deschedule(). An integer error code less than zero is returned if reject is not a
valid pointer. This system call is atomic with respect to make runnable(): the process of
examining reject and suspending the process will not be interleaved with any execution of
make runnable() by another process.

• int make runnable(int pid) - Makes the deschedule()d process with process ID pid
runnable by the scheduler. On success, zero is returned. If pid is not the process ID of a
process suspended due to having called deschedule(), then an integer error code less than
zero is returned.

• void *brk(void *addr) - Sets the break value of the calling process. The initial break
value of a process is the address immediately above the last address used for program
instructions and data. This call has the effect of allocating or deallocating enough memory
to cover only up to the specified address, rounded up to an integer multiple of the page size.
If addr is less than the initial break value, or if addr is within four pages of the stack, the

3

break point is not changed. The return value of brk() is always the break value after the
call has been performed, even if the break value does not change.

• int get pid(void) - Returns the process ID of the calling process.

• void exit(int status) - Terminates execution of the calling process immediately. In
the case that the process’ resources are not being shared, all resources used by the calling
process are reclaimed.

• void read line(int len, char *buf) - Reads the next line from the console and copies
it into the buffer pointed to by buf. If there is no line of input currently available, the calling
process is descheduled until one is. The length of the buffer is indicated by len. If the length
of the line exceeds the length of the buffer, only len-1 characters should be copied into buf.
The read line() call will NULL-terminate buf if there is room after the last character
placed therein.

• int print(int size, char *buf) - Prints the specified bytes to the console. The length
of the buffer buf is indicated by len. Returns an integer error code less than zero if the
buffer specification is invalid. Returns zero otherwise.

• void set term color(int color) - Sets the terminal print color for any future output
to the console. If color does not specify a valid color, an integer error code less than zero
will be returned. Zero is returned on success.

• void set cursor pos(int row, int col) - Sets the cursor to the location (row, col).
If the location is not valid, an integer error code less than zero is returned. Zero is returned
on success.

• int sleep(int time) - Deschedules the calling process until at least ticks timer
interrupts (which occur every 10 milliseconds) have occured after the call. Returns
immediately if ticks is zero. Returns an integer error code less than zero if ticks is
negative. Returns zero otherwise.

• char getchar(void) - Returns a single character from the character input stream. If
the input stream is empty the process is descheduled until a character is available.

In addition to the system calls accessed through stub routines, you will use the minclone()
system call. However, you will not create a stub of the form int minclone(void). When you
call minclone(), the kernel creates a new thread. Almost everything about the new thread is
identical to the corresponding part of the old thread. For example, they share the existing address
space and all memory regions. Likewise, all register values are identical, with the exception of
%eax, which is set to the process/thread ID of the created thread in the calling thread and zero in
the new thread. If something goes wrong, an error code less than zero is returned to the calling
thread, and no new thread is created.

6 Thread Library API

The library you will write will contain:

4

• Thread management calls

• Mutexes and condition variables

• Semaphores

• Readers/writers locks

Please note that all lock-like objects are defined to be “unlocked” when created. Semaphores
are defined to contain the value 1 when created.

Unlike system call stubs, thread library routines need not be one-per-source-file, but you
should use good judgement in how you partition them. You should arrange that the Makefile
infrastructure you are given will build all of them them into libthread.a (see the README file in
the tarball).

6.1 Thread Management API

• int thr init(unsigned int size) - This function is responsible for initializing the
thread library. The argument ’size’ specifies the size of the stack(plus thread private
memory) that each thread will have. This function must be called before any call to any
of the other thread library functions, and it must only be called once. Calling other thread
functions before calling thr init() may have an undefined effect. This function returns
zero on success, and a negative number on an error.

• int thr create(void *(*func)(void *), void *arg) - This function creates a new
thread to run func(arg). This function should allocate a stack for the new thread and then
invoke the minclone() system call. A stack frame should be created for the child, and the
child should be provided with some way of accessing its thread identifier(tid). On success
the thread ID of the new thread is returned, on error a negative number is returned.

You should pay attention to (at least) two stack-related issues. First, the stack pointer
should essentially always be aligned on a 32-bit boundary (i.e., %esp mod 4 == 0). Second,
you need to think very carefully about the relationship of a new thread to the stack of the
parent thread, especially right after the minclone() system call has completed.

• int thr join(int tid, int *departed, void **status) - This function suspends
execution of the calling thread, and waits for thread tid to thr exit() if it exists. If
tid is zero any thread associated with the process is joined on. If departed is not NULL, it
is the address where the tid of the departing thread should be stored. If status is not NULL,
the value passed to thr exit() by the terminating thread will be placed in the location
referenced by status. Only one thread may join on any given thread. Others will return an
error immediately. If thread tid does not exist, an error will be returned. This function
returns zero on success, and a negative number on an error.

• void thr exit(void *status) - This function exits the thread with exit status status.
If a thread does not call thr exit(), the behavior should be the same as if the function did
call thr exit() and passed in the return value from the thread’s body function.

• int thr getid(void) - Returns the thread ID of the currently running thread.

5

6.2 Mutexes

Mutual exclusion locks prevent multiple threads from simultaneously executing critical sections of
code. To implement mutexes you may use the XCHG instruction documented on page 3-714 of the
Intel Instruction Set Reference. For more information on the behavior of mutexes, feel free to refer
to the text, or to the Solaris or Linux man pages for the functions of names pthread mutex init(),
etc..

• int mutex init(mutex t *mp) - This function should initialize the mutex pointed to by
mp. Effects of the use of a mutex before the mutex has been initialized may be undefined.
This function returns zero on success, and a negative number on an error.

• int mutex destroy(mutex t *mp) - This function should destroy the mutex pointed to
by mp. The effects of using a mutex after it has been destroyed may be undefined. If this
function is called while the mutex is locked, it should immediately return an error. This
function returns zero on success, and a negative number on an error.

• int mutex lock(mutex t *mp) - A call to this function ensures mutual exclusion in the
region between itself and a call to mutex unlock(). A thread calling this function while
another thread is in the critical section should block until it is able to claim the lock. This
function returns zero on success, and a negative number on an error.

• int mutex unlock(mutex t *mp) - Signals the end of a region of mutual exclusion. The
calling thread gives up its claim to the lock. This function returns zero on success, and a
negative number on an error.

6.3 Condition Variables

Condition variables are used for waiting, for awhile, for mutex-protected state to be modified by
some other thread. A condition variable allows a thread to voluntarily relinquish the CPU so
that other threads may make changes to the shared state, and then tell the waiting thread that
they have done so. If there is some shared resource, threads may de-schedule themselves and be
woken up by whichever thread was using that resource when that thread is finished with it. In
implementing condition variables, you may use your mutexes, and the system calls deschedule()
and make runnable(). For more information on the behaviour of condition variables, please see
the man pages on either Solaris or Linux for the functions pthread cond wait(), etc..

• int cond init(cond t *cv) - This function should initialize the condition variable
pointed to by cv. Effects of using a condition variable before it has been initialized may be
undefined. This function returns zero on success and a number less than zero on error.

• int cond destroy(cond t *cv) - This function should destroy the condition variable
pointed to by cv. Effects of using a condition variable after it has been destroyed may
be undefined. If cond destroy() is called while threads are still blocked waiting on the
condition variable, then the function should return an error immediately. This function
returns zero on success and a number less than zero on an error.

• int cond wait(cond t *cv, mutex t *mp) - The condition wait function allows a
thread to wait for a condition and release the associated mutex that it needs to hold to

6

check that condition. The calling thread blocks, waiting to be signaled. The blocked thread
may be awakened by a cond signal() or a cond broadcast(). This function returns zero
on success, and a negative number on an error.

• int cond signal(cond t *cv) - This function should wake up a thread waiting on the
condition variable pointed to by cv, if one exists. This function returns zero on success, and
a negative number on an error.

• int cond broadcast(cond t *cv) - This function should wake up all threads waiting
on the condition variable pointed to by cv. This function returns zero on success, and a
negative number on an error.

6.4 Semaphores

As discussed in class, semaphores are a higher-level construct than mutexes and condition
variables. Implementing semaphores on top of mutexes and condition variables should be a
straightforward but hopefully illuminating experience.

• int sem init(sem t *sem) - This function should initialize the semaphore pointed to
by sem. Effects of using a semaphore before it has been initialized may be undefined. This
function returns zero on success and a number less than zero on error.

• int sem destroy(sem t *sem) - This function should destroy the semaphore pointed to
by sem. Effects of using a semaphore after it has been destroyed may be undefined. If
sem destroy() is called while threads are still blocked waiting on the semaphore, then the
function should return an error immediately. This function returns zero on success and a
number less than zero on an error.

• int sem wait(sem t *sem) - The semaphore wait function allows a thread to decrement
a semaphore value, and may cause it to block indefinitely until it is legal to perform the
decrement. This function returns zero on success, and a negative number on an error.

• int sem signal(sem t *sem) - This function should wake up a thread waiting on the
semaphore pointed to by sem, if one exists, and should update the semaphore value
regardless. This function returns zero on success, and a negative number on an error.

6.5 Readers/writers locks

Please refer to Section 7.5.2 of the textbook. We expect you to solve at least the “second”
readers/writers problem, but we would like to point out that there are other formulations than
the “first” and “second.” You may choose to implement something “at least as good as” the
“second” case. Of course, no matter what you choose to implement you should explain what,
how, and why. You may choose which underlying primitives (i.e., mutex/cvar or semaphore) to
employ, but once again we are interested in the reasoning you employ.

• int rwlock init(rwlock t *rwlock) - This function should initialize the lock pointed
to by rwlock. Effects of using a lock before it has been initialized may be undefined. This
function returns zero on success and a number less than zero on error.

7

• int rwlock destroy(rwlock t *rwlock) - This function should destroy the lock pointed
to by rwlock. Effects of using a lock after it has been destroyed may be undefined. If
rwlock destroy() is called while threads are still blocked waiting on the lock, then the
function should return an error immediately. This function returns zero on success and a
number less than zero on an error.

• int rwlock lock(rwlock t *rwlock, int type) - The type parameter is required to
be either RWLOCK READ (for a shared lock) or RWLOCK WRITE (for an exclusive lock). This
function blocks the calling thread until it has been granted the requested form of access.
This function returns zero on success, and a negative number on an error.

• int rwlock unlock(rwlock t *rwlock) - This function indicates that the calling thread
is done using the locked state in whichever mode it was granted access for. Whether a call
to this function does or does not result in a thread being awakened depends on the policy
you chose to implement. This function returns zero on success, and a negative number on
an error.

6.6 A Note on the Thread Library

Please keep in mind that much of the code for this project needs to be thread safe. In particular
the thread library itself should be thread safe.

6.7 Distribution Files

The tarball for this project has been posted on the course webpage. Please read the README
included with the tarball.

7 Documentation

For each project in 15-410, functions and structures should be documented using doxygen.
Doxygen uses syntax similar to Javadoc. The Doxygen documentation can be found on the
course website. The provided Makefile has a target called html doc that will invoke doxygen on
the source files listed in the Makefile.

8 The C Library

This is simply a list of the most common library functions that are provided. For details on using
these functions please see the appropriate man pages.

Other functions are provided that are not listed here. Please see the appropriate header files
for a full listing of the provided functions.

Some functions typically found in a C I/O library are provided by user/lib/libstdio.a.
The header file for these functions is user/lib/inc/stdio.h.

• int putchar(int c)

• int puts(const char *str)

8

• int printf(const char *format, ...)

• int sprintf(char *dest, const char *format, ...)

• int snprintf(char *dest, int size, const char *formant, ...)

• int sscanf(const char *str, const char *format, ...)

• void lprintf(const char *format, ...)

Note that lprintf() is the user-space analog of the lprintf kern() you used in Project 1.
Some functions typically found in various places in a standard C library are provided by

user/lib/libstdlib.a. The header files for these functions, in user/lib/inc, are stdlib.h,
assert.h, and ctype.h.

• int atoi(const char *str)

• long atol(const char *str)

• long strtol(const char *in, const char **out, int base)

• unsigned long strtoul(const char *in, const char **out, int base)

• void panic(const char *format, ...)

• void assert(int expression)

We are providing you with non-thread-safe versions of the standard C library memory
allocation routines. You are required to provide a thread-safe wrapper routine with the appropriate
name (remove the underscore character) for each provided routine. These should be genuine
wrappers, i.e., you should not copy and modify the source code for the provided routines.

• void * malloc(size t size)

• void * calloc(size t nelt, size t eltsize)

• void * realloc(void *buf, size t new size)

• void free(void *buf)

Some functions typically found in a C string library are provided by user/lib/libstring.a.
The header file for these functions is user/lib/inc/string.h.

• int strlen(const char *s)

• char *strcpy(char *dest, char *src)

• char *strncpy(char *dest, char *src, int n)

• char *strdup(const char *s)

• char *strcat(char *dest, const char *src)

9

• char *strncat(char *dest, const char *src, int n)

• int strcmp(const char *a, const char *b)

• int strncmp(const char *a, const char *b, int n)

• void *memmove(void *to, const void *from, unsigned int n)

• void *memset(void *to, int ch, unsigned int n)

• void *memcpy(void *to, const void *from, unsigned int n)

9 Debugging

The same MAGIC BREAK macro which you used in Project 1 is also available to user processes in
Project 2 if you #include the user/inc/magic break.h header file.

The function call lprintf() may be used to output debugging messages from user programs.
Its prototype is in user/lib/inc/stdio.h.

Also, user processes can be symbolically debuged using the Simics symbolic debugger.

10 Deliverables

Implement the functions for the thread library, and concurrency tools conforming to the
documented APIs. Hand in all source files that you generate. Make sure to provide a design
description in README.dox, including an overview of existing issues and any interesting design
decisions you made.

11 Grading Criteria

You will be graded on the completeness and correctness of your project. A complete project is
composed of a reasonable attempt at each function in the API. Also, a complete project follows
the prescribed build process, and is well documented. A correct project implements the provided
specification. Also, processes using the API provided by a correct project will not be killed by the
kernel, and will not suffer from inconsistencies related to concurrency errors in the library. Please
note that there exist concurrency errors that even carefully written test cases may not expose.
Read and think through the code carefully. Do not forget to consider pathalogical cases.

The most important parts of the assignment to complete are the thread management, mutex,
and condition variable calls. These should be well-designed and solidly implemented. It is
probably unwise to devote substantial coding effort to the other parts of the library before the
core is reliable.

12 Strategy

1. Read the handout.

10

2. Right away write system call wrappers for one or two system calls and run a small test
program using those system calls. This is probably the best way to engage yourself in the
project and to get an initial grasp of its scope. A good first choice is exit(), since the
C run-time start-up code requires an exit() stub to exist before you can build any test
program. A good second choice would be print().

3. Write the remaining system call wrappers (with the exception of minclone()).

4. Design and make a draft version of mutexes and condition variables. In order to do
that, you will probably need to perform a hazard analysis of which system calls or system
call sequences would harm each other if their execution were interleaved by the scheduler
switching from one process to another.

5. What can you test at this point? Be creative.

6. Think hard about stacks. What should the child’s stack look like before and after a
minclone()?

7. Write and test thr create().

8. Write thr exit(). Don’t worry about reporting exit status, yet—it’s tricky enough without
that!

9. Test mutexes and condition variables.

10. Write and test thr join().

11. Worry about reporting the exit status.

12. This might be a good point to relax and have fun writing semaphores.

13. Test. Debug. Test. Debug. Test. Sleep once in a while.

14. Design and implement readers/writers locks.

15. Celebrate! You have created a robust and useful kernel supported user level thread library.

11

