
Project 3: Writing a Kernel From Scratch
15-410 Operating Systems

October 4, 2003

Contents

1 Introduction 4
1.1 Overview . 4
1.2 Goals . 4
1.3 Technology Disclaimer 4
1.4 Important Dates .. 5
1.5 Groups . 5
1.6 Grading . 5
1.7 Hand-in . 5

2 Hardware Primitives 5
2.1 Pivilege Levels .. 5
2.2 Segmentation .6
2.3 Special Registers .. . 6

2.3.1 The Segment Selector Registers 6
2.3.2 The EFLAGS Register . 6
2.3.3 Control Registers .7
2.3.4 The Kernel Stack Pointer .. 7
2.3.5 C interface . 8

2.4 Paging . 8
2.5 The Layout of Physical Memory 9

3 The Boot Process 9

4 Device Drivers and Interrupt Handlers 10
4.1 The Interrupt Descriptor Table 10
4.2 Interrupts, Faults, and Exceptions 10

4.2.1 Hardware Interrupts .10
4.2.2 Software Interrupts .. 11
4.2.3 Faults and Exceptions .11
4.2.4 Configuring Interrupts .. 11
4.2.5 Writing an Interrupt Handler 12
4.2.6 Disabling Interrupts .. 12

4.3 Device Drivers .13

1

4.3.1 Communicating with Devices .. 13
4.3.2 Console Device Driver Specification 13
4.3.3 Timer Device Driver Specification 15
4.3.4 Keyboard Device Driver Specification 15
4.3.5 Floating-Point Unit .. 16

5 Context Switching and Scheduling 16
5.1 Context Switching .. 16
5.2 Scheduling . 17

6 System Calls 17
6.1 The System Call Interface 17
6.2 System Call Specifications 17

6.2.1 Overview . 17
6.2.2 Validation . 17
6.2.3 The System Calls . 18

7 Building and Loading User Programs 20
7.1 Building User Programs .. . 21
7.2 Loading User Programs .. . 21

8 The Programming Environment 21
8.1 Kernel Programming .. 21

8.1.1 A Simple C Library . 22
8.1.2 Processor Utility Functions 23
8.1.3 Makefile . 24

8.2 User Programming .24

9 Hints on Implementing a Kernel 24
9.1 Code Organization .. 24

9.1.1 Encapsulation . 25
9.1.2 Method tables . 25
9.1.3 Embedded Traversal Fields .. . 26

9.2 Process Initialization 27
9.3 Kernel Initialization 27
9.4 Requests for Help .. 28

10 Debugging 28
10.1 Kernel Debugging .. . 28
10.2 User Process Debugging 29

2

11 Checkpoints 29
11.1 Checkpoint One .. 30
11.2 Checkpoint Two .. 30
11.3 Checkpoint Three .. . 30

12 Plan of Attack 30

3

1 Introduction

This document will serve as a guide in completing the 15-410 kernel project. The goal of this
document is to supply enough information to complete the project without getting bogged down
in implementation details. Information contained in lecture notes, or in the Intel documentation
will be repeated here only sparingly, and these sources willoften be referenced, so keep them
handy. Good luck!

1.1 Overview

This project will require the design and implementation of aUnix-like kernel. The 410 kernel
will support multiple virtual memory address spaces via paging, preemptive multitasking, and a
small set of important system calls. Also, the kernel will supply device drivers for the keyboard,
the console, and the timer.

1.2 Goals
� Acquiring a deep understanding of the operation of a Unix-like kernel through the design

and implementation of one.

� Gaining experience reading technical specifications such as the Intel documentation.

� Debugging kernel code. Virtual memory, interrupts, and concurrency concerns add
complexity to the debugging process.

� Working with a partner. Learning how to program as a team(Pair Programming, division
of labor, etc.). Using source control.

1.3 Technology Disclaimer

Because of the availability, low cost, and widespread use ofthe x86 architecture, it was chosen
as the platform for this sequence of projects. As its creator, Intel Corporation has provided much
of the documentation used in the development of these projects. In its literature Intel uses and
defines terms like interrupt, fault, etc.. On top of this the x86 architecture will be the only platform
used in these projects.

The goal of this project set is certainly not to teach the idiosyncrasies of the x86 architecture
(or Intel’s documentation). That said, it will be necessaryto become accustomed to the x86 way
of doing things, and the Intel nomenclature, for the purposes of completing this project set. Just
keep in mind that the x86 way of doing things is not the only wayof doing things. It is the price
to be paid for learning the principles of operating systems on a real world system instead of a
simulated architecture.

4

1.4 Important Dates
� Friday, October 3: Project 3 begins

� Friday, October 10: Checkpoint 1 due (standard turn-in procedure).

� Monday, October 20: Checkpoint 2 due (we will probably handle this via 5-minute mini-
interviews).

� Friday, November 14: Project 3 due

1.5 Groups

The kernel project is a group assignment. You should alreadybe in a group of two from the
previous project. If you are not in a group, or you are having other group difficulties, send email
to staff-410@cs.cmu.edu.

1.6 Grading

The primary criteria for grading are correctness, design, and style. A correct kernel implements
the provided specification. Correctness also includes robustness. A robust kernel does not
crash (no matter what instructions are executed by user processes), handles interesting corner
cases correctly, and recovers gracefully from errors. A well designed kernel is organized in
an intuitive and straightforward way. Functionality is separated between different source files.
Global variables are used when appropriate (they are more appropriate in OS kernels than in most
programs), but not to excess (basically, consider the correct scope). Appropriate data structures
are used when needed. A kernel with good style is readable. Some noted deviations from what
may be generally considered to be good style will be penalized. Also, poorly commented, hard-
to-read code will be penalized, as will a project that does not follow the prescribed build process.

1.7 Hand-in

The hand-in directories will be created as the due date nears. More specific instructions will
be provided at that time. Subject to later instructions, plan to hand in all source files, header
files, and Makefiles that you generate. Plan to keep to yourself disk image files, editor-generated
backup files, log files, etc.

2 Hardware Primitives

2.1 Pivilege Levels

The x86 architecture supports four pivilege levels, PL0 through PL3. Lower privilege numbers
indicate greater privilege. The kernel will run at PL0. Userprocesses will run at PL3.

5

2.2 Segmentation

A segment is simply a region of the address space. Two notableproperties can be associated with
a segment: the pivilege level, and whether the segment contains code, stack, or data. Segments
can be defined to span the entire address space.

The 410 kernel will use segmentation as little as possible. The x86 architecture requires some
use of segmentation, however. Installing interrupt handlers, and managing processes requires
some understanding of segmentation.

In the 410 kernel, there will be four segments. These four segments will each span the entire
address space. Two of them will require that the privilege level be set to PL0 to be accessed, and
two will require that the privilege level be set to PL3 or lower to be accessed. For each pair of
segments, one will be code and one will be data.

2.3 Special Registers

This project requires an understanding of some of the x86 processor data structures. This section
will cover some important structures that the kernel must manipulate in order to function properly.

2.3.1 The Segment Selector Registers

There are six segment selector registers:%cs, %ss, %ds, %es, %fs, and%gs. A segment selector
is really an index into another processor data structure called the Global Descriptor Table(GDT).
The GDT is where the segments are actually defined. The provided startup code sets up the
segment descriptors in the GDT, but it is the resposibility of the kernel to have the correct values
in the segment selector registers on entering and leaving the kernel. The code segment selector
for the currently running process is stored in%cs. The stack segment selector for the currently
running process is stored in%ss. It is possible to specify up to four data segment selectors.They
are%ds through%gs. The code segment selector is used to access instructions. The stack segment
selector is used in stack related operations(i.e.PUSH, POP, etc.). The data segment selectors are
used in all other operations that access memory.

On entering thekernel main() function, the kernel and user segments have already been
installed into the GDT. When a user process is started, user level code, stack, and data segment
selectors need to be specified and loaded into the segment selector registers. When a user process
takes an interrupt, the code and stack segment selector registers will be saved automatically. The
data segment selector registers and the general purpose registers will not be saved automatically,
however.

For more information on the GDT and segmentation please sections 2.1, 2.4, and 3.2 of
intel-sys.pdf and the segmentation handout on the 15-410 web site.

2.3.2 The EFLAGS Register

The EFLAGS register controls some important processor state. It will be necessary to
provide the correct value for theEFLAGS register when starting the first user process, so it

6

is important to understand its format. TheEFLAGS register is discussed in section 2.3 of
intel-sys.pdf. lib/inc/x86/eflags.h contains useful definitions. The bootstrap process
sets EFLAGS to an appropriate value, available to you via theget eflags() macro from
lib/inc/x86/proc reg.h, for your kernel execution. Before entering user mode you will need
to arrange for bit 1 (“reserved”) to be 1, and should arrance for theIF andIOPL USER bits to be
set. The first method you think of for doing this may not be the right method.

2.3.3 Control Registers

� Control Register Zero(%cr0): This control register contains the most powerful system flags.
The 410 kernel will only be concerned with bit 31, which activates paging when set, and
deactivates it when unset. Paging is discussed below. Do notmodify the state of any of the
other bits.

� Control Register One(%cr1): This control register is reserved and should not be touched.

� Control Register Two(%cr2): When there is a page fault,%cr2 will contain the address that
caused the fault. This value will be needed by the page fault handler.

� Control Register Three(%cr3): This control register is sometimes known as the Page
Directory Base Register(PDBR). It holds the address of the current page directory in its
top 20 bits. Bits 3 and 4 control some aspects of caching and should both be unset. The
%cr3 register will need to be updated when switching address spaces. Writing to the%cr3
register invalidates entries for all pages in the TLB not marked global.

� Control Register Four(%cr4): This control register contains a number of extension flags
that can be safely ignored by the 410 kernel. Bit 7 is the Page Global Enable(PGE) flag.
This flag should be set for reasons discussed below.

2.3.4 The Kernel Stack Pointer

In the x86 architecture, the stacks for user level code and kernel level code are separate. When an
interrupt occurs that transitions the current privilege level of the process to kernel mode, the stack
pointer is set to the top of the kernel stack. A small amount ofcontext information is then pushed
onto the stack to allow the previously running process to resume once the interrupt handler has
finished.

The value of the stack pointer when we enter kernel mode is defined by the currently running
task. Tasks are a hardware process mechanism provided by thex86 architecture. The 410 kernel
will not use tasks. It is faster to manipulate the process abstraction in software. It is necessary,
however, to define at least one task. This takes place in the bootstrapping code, before execution
of thekernel main() function begins. The provided functionset esp0()will modify the initial
kernel stack pointer. This function is defined inlib/x86/seg.c.

7

2.3.5 C interface

There are inline assembly macros defined inlib/inc/x86/proc reg.h, that can be used to read
and write many of the processor’s registers.

2.4 Paging

The x86 architecture uses a two-level paging scheme with four kilobyte pages. It is also possible
to use larger page sizes. The top level of the paging structure is called the page directory, while
the second level consists of objects called page tables. Theformat of the entries in the page
directory and page tables are very similar, however, their fields have slightly different meaning.
Here is the format of both a page directory entry and a page table entry.

Entries in both tables use the top twenty bits to specify an address. A page directory entry
specifies the virtual memory address of a page table in the toptwenty bits. A page table entry
specifies the number of a physical frame in the top twenty bits. Both page tables and physical
frames must be page aligned. An object is page aligned if the bottom twelve bits of the lowest
address of the object are zero.

The bottom twelve bits in a page directory or page table entryare flags.

� Bit 0: This is the present flag. It has the same meaning in both page directories and page
tables. If the flag is unset, then an attempt to read, write, orexecute data stored at an
address within that page(or a page that would be referenced by the not present page table)
will cause a page fault to be generated. On installing a new page table into a page directory,
or framing a virtual page, the preset bit should be set.

� Bit 1: This is the read/write flag. If the flag is set, then the page is writable. If the flag is
unset then the page is read-only, and attempts to write will cause a page fault. This flag has
different meanings in page table and page directory entries. See the table on page 136 of
intel-sys.pdf for details.

� Bit 2: This is the user/supervisor flag. If the flag is set, thenthe page is user accessible.
This flag has different meanings in page table and page directory entries. See the table on
page 136 ofintel-sys.pdf for details.

� Bit 3: This is the page-level write through flag. If it is set, write-through caching is enabled
for that page or page table, otherwise write-back caching isused. This flag should be left
unset.

� Bit 4: This is the page-level disable caching flag. If the flag is set, then caching of the
associated page or page table is disabled. This flag should beleft unset.

� Bit 5: This is the accessed flag. It is set by the hardware when the page pointed to by a
page table entry is accessed. The accessed bit is set in a pagedirectory entry when any of
the pages in the page table it references are accessed. This flag may be ignored by the 410
kernel.

8

� Bit 6: This is the dirty flag. It is only valid in page table entries. This flag is set by the
hardware when the page referenced by the page table entry is written to. This flag can be
used to implement demand paging. However, this flag may be ignored by the 410 kernel.

� Bit 7: This is the page size flag in a page directory entry, and the page attribute index flag
in a page table entry. Because the 410 kernel uses four kilobyte pages all of the same type,
both of these flags should be unset.

� Bit 8: This is the global flag in a page table entry. This flag hasno meaning in a page
directory entry. If the global flag is set in a page table entry, then the virtual-to-physical
mapping will not be flushed from the TLB automatically when writing %cr3. This flag
should be used to prevent the kernel mappings from being flushed on context switches. To
use this bit, the page global enable flag in%cr4 must be set.

� Bits 9, 10, 11: These bits are left available for use by software. They can be used to
implement demand paging. The 410 kernel may ignore these bits.

2.5 The Layout of Physical Memory

Although there are many ways to partition physical memory, the 410 kernel will use the following
model. The bottom 16MB of physical memory (from address 0x0 to address 0xffffff, i.e., just
underUSER MEM START as defined bylib/inc/x86/seg.h), is reserved for the kernel. This
kernel memory should appear as the bottom 16MB of each process’s virtual address space (that
is, the virtual-to-physical mapping will be the identity function for the first 16 megabytes; this is
known as “direct mapping”, or “V=R” in the IBM mainframe world).

Note that user processes should not be able to read from or write to kernel memory, even
though it is resident at the bottom of each user process’ address space. In other words, like the
“black hole” between the top of the heap and the bottom of the stack, there should also be a
“black hole” from 0 to 0xffffff.

The rest of physical memory, i.e. from 0x1000000 up, should be used for frames. In
lib/inc/x86/seg.h is a prototype for a functionint machine phys frames(void), provided
by lib/x86/seg.c, which will return to you the number ofPAGE SIZE-sized frames supported
by the simics virtual machine you will be running on (PAGE SIZE and the appropriatePAGE SHIFT
are located inlib/inc/page.h). This frame count will include both kernel frames and user
memory frames.

Please note that the memory-allocation functions discussed below (e.g.,malloc()) manage
only kernel virtual pages. You are responsible for defining and implementing an allocator
appropriate for the task of managing free physical frames.

3 The Boot Process

The boot process is somewhat complicated, and it is not necessary to fully understand it
in order to complete this project. To learn more about the boot process, please read about

9

the GRUB boot loader (http://www.gnu.org/software/grub/). This is the boot loader
that will be used to load the 410 kernel. The 410 kernel complies with the Multiboot
specification as defined athttp://www.mcc.ac.uk/grub/multiboot toc.html. After the
boot loader finishes loading the kernel into memory, it invokes the functionmultiboot main()
in lib/multiboot/baes multiboot main.c. The support code inlib/multiboot ensures
that the 410 kernel follows the Multiboot specification, initializes processor data structures with
default values, and calls the 410kernel main() function.

A memory map of the system is stored in a list of range descriptors that is pointed to by the
information handed to the kernel by the multiboot initialization functions. The relevant structures
are defined inlib/inc/multiboot.h. This information should be used when setting up the list
of free physical frames, and in determining the amount of memory availible in the system.

4 Device Drivers and Interrupt Handlers

4.1 The Interrupt Descriptor Table

The Interrupt Descriptor Table(IDT) is a processor data structure that the processor reads when
an interrupt is received. Interrupts are delivered to the processor by the Programmable Interrupt
Controller(PIC) described below. The table contains a descriptor for each interrupt. A descriptor
contains information about what should happen when an interrupt is received. Importantly, it
contains the address of the handler for that interrupt. An interrupt handler is a function that
performs a set of actions appropriate for the kind of interrupt that was issued. Once the processor
locates the appropriate entry in the IDT, it saves information such that after the interrupt handler
returns, it can resume what it was doing before the interruptwas issued. The PIC delivers
interrupts to the processor over Interrupt Request(IRQ) lines. Note that IRQ numbers do not
necessarily map to matching indeces into the IDT. PICs have the ability to map their IRQ lines
to any entries in the IDT. For more information about interrupts, the IDT, and the PIC, please see
chapter 5 ofintel-sys.pdf.

4.2 Interrupts, Faults, and Exceptions

4.2.1 Hardware Interrupts

When a packet arrives at a network interface, the user presses a key on the keyboard or moves the
mouse, or any other type of event occurs at a hardware device,that device needs a way of getting
the attention of the kernel. One way is for the kernel to keep asking the device if it has something
new to report (either periodically or continuously). This is called polled I/O. This is wasteful of
CPU time. Modern kernels take advantage of hardware interrupts.

When a device wants to raise a hardware interrupt, it communicates this desire to one of
two PICs by asserting some control signals on interrupt request lines. The PICs are responsible
for serializing the interrupts (taking possibly concurrent interrupts and ordering them), and then
communicating the interrupts to the processor through special control lines. The PICs tell the

10

processor that a hardware interrupt has occurred, as well aswhich request line the interrupt
occurred on so the processor knows how to handle the interrupt. There are some conventions
as to what devices are associated with what interrupt request lines.

The PIC chip used in older IBM compatible PCs only has 8 IRQ lines. This proves to be
limiting, so a second PIC is daisy chained off of the first one in more recent machines. When an
interrupt is triggered on the second PIC, it in turn triggersan interrupt on the first PIC (on IRQ 2).
The interrupt is then communicated to the processor.

4.2.2 Software Interrupts

Hardware interrupts are not the only type of interrupt. Programs can issue software interrupts
as well. These interrupts are often used as a way to transfer execution to the kernel in a
controlled manner, for example during a system call. To perform a software interrupt a user
application will execute a special instruction (INT), which will cause the processor to execute
the nth handler in the IDT. In addition to hardware and software interrupt handlers, the IDT also
contains information about exception handlers. Exceptions are conditions in the processor that
are usually unintended and need to be addressed. Page faults, divide-by-zero, and segmentation
faults are all types of exceptions.

4.2.3 Faults and Exceptions

Please read section 5.3 ofintel-sys.pdf on Exception Classifications. Note that entries exist
in the IDT for faults and exceptions. The 410 kernel should handle the following exceptions:
Division Error, Device Not Present,Invalid Opcode, Alignment Check, General Protection Fault,
and Page Fault. On each of these exceptions, the kernel should report the virtual address of the
instruction that caused the exception, along with any otherrelevent information(ie. the faulting
address on a Page Fault if the user process will be killed by the kernel).

4.2.4 Configuring Interrupts

As mentioned previously, an x86 processor uses the IDT to findthe address of the proper interrupt
handler when an interrupt is issued. To install interrupt, fault, and exception handlers entries need
to be installed in the IDT.

An IDT entry can be one of three different types: a task gate, an interrupt gate, or a trap
gate. Task gates make use of the processor’s hardware task switching functionality, and so
are inappropriate for the 410 kernel. Interrupt gates disable interrupts on entering the interrupt
handler, and so are also inappropriate as the 410 kernel is preemptable. The 410 kernel uses trap
gates for all of its interrupts.

The format of the trap gate is on page 151 ofintel-sys.pdf. Note that regardless of the
type of the gate, the descriptor is 64 bits long. To find out thebase address of the IDT, the
instruction SIDT can be used. A C wrapper around this instruction is defined in the support code
in lib/x86/seg.c. The prototype can be found inlib/inc/x86/seg.h.

11

The purpose of some of the fields of a trap gate are not obvious.The DPL is the privilege
level required to execute the handler. The offset is the virtual address of the handler. The
Segment Selector should be set to the segment selector for the target code segment. This is
KERNEL CS SEGSEL defined inlib/inc/x86/seg.h.

4.2.5 Writing an Interrupt Handler

As mentioned above, when the processor receives an interrupt it uses the IDT to start executing
the interrupt handler. Before the interrupt handler executes, however, the processor pushes some
information onto the stack so that it can resume its previoustask when the handler has completed.
The exact contents and order of this information is presented on page 153 ofintel-sys.pdf.

This information is indeed enough to resume executing whatever code was running when the
interrupt first arrived. However, in order to service the interrupt we need to execute some code;
this code will clobber the values in the general purpose registers. When execution in normal code
resumes, that code will expect to see the same values in the registers, as if no interrupt had ever
occurred. So the first thing an interrupt handler must do is save all the general purpose registers,
plus%ebp.

The easiest way to save these registers is to just save them onthe stack. This is easily done
with thePUSHA andPOPA instructions (more information on these instructions can be found on
pages 624 and 576 ofintel-isr.pdf). To be sure that the registers are saved before anything
else occurs, assembly wrappers for the interrupt handlers should be written. All that must be
done in assembly is saving the registers, calling the C handler, then restoring the registers. To
return from an interrupt, use theIRET instruction. It uses the information initially saved on the
stack by the interrupt to return to the code that was executing when the interrupt occurred.

A final note about writing assembly: comment assembly code profusely. One comment per
instruction is not a bad rule of thumb. Keep your assembly in separate files, and to export a
symbol (likeasm timer wrapper) so you can refer to it elsewhere, use the assembler directive
.globl, like this:

.globl asm_timer_wrapper

4.2.6 Disabling Interrupts

The 410 kernel has a number of critical sections. It may be necessary to disable interrupts to
protect these critical sections. Interrupts can be disabled by the macrodisable interrupts()
defined inlib/inc/x86/proc reg.h, or by theCLI instruction. Interrupts can be enabled by
the macroenable interrupts() defined in the same file, or by theSTI instruction.

The simulator is programmed to log how long interrupts are disabled. Note that the C
macros referenced above issue the Simics magic instruction. For convenience, macros have
also been written to replace theCLI and STI instructions. These macros are defined in
lib/inc/x86/cli sti.asm.h. This file must be #included in each assembly file in which
theCLI or STI instructions appear.

12

The log fileints.log is stored whenSIM halt() is called. This function should be used to
implement thehalt() system call. If interrupts are disabled for an especially long time, a note
of it is made in the log file.

Your 410 kernel should be as preemptible as possible. This means that, ideally, no matter
what code sequence is running, whether in kernel mode or usermode, when an interrupt arrives
it can be handled and can cause an immediate context switch ifappropriate. In other words,
if an interrupt signals the completion of an event that some process is waiting for, it should be
possible for your kernel to suspend the interrupted processand resume the waiting process so that
returning from the interrupt activates the waiting processrather than the interrupted process.

To do this, you will need to strive to arrange that as much workas possible is performed
within the context of a single process’s kernel execution environment without dependencies on
other processes. When race conditions with other processesare unavoidable, try to structure your
code so that interrupts are disabled for multiple short periods of time rather than one long period
of time.

A portion of your grade will depend on how preemptible your kernel is.

4.3 Device Drivers

4.3.1 Communicating with Devices

There are two ways to communicate with a device in the x86 architecture. The first is to send
bytes to an I/O port. The second is through memory-mapped I/O.

Most devices in the x86 architecture are accessed through I/O ports. These ports are
controlled by special system hardware that has access to thedata, address, and control lines on
the processor. By using special hardware instructions to read and write from these ports, I/O ports
can be used without infringing upon the normal address spaceof the kernel or user applications.
This is because these special instructions tell the hardware that this memory reference is actually
an I/O port, not a traditional memory location. For more information on I/O ports, consult
chapter 10 of intel-arch.pdf. Both the timer and the keyboard use I/O ports. For convenience,
an assortment of C wrapper functions is provided for readingand writing I/O ports. These are
located inlib/inc/x86/pio.h.

There are also some devices which are accessed by reading andwriting special addresses
in traditional memory (memory-mapped I/O). This part of memory is part of the regular address
space and therefore needs to be carefully managed. The console uses memory-mapped I/O (along
with some I/O ports for things like cursor position).

4.3.2 Console Device Driver Specification

The contents of the console are controlled by a region of mainmemory (memory mapped I/O).
Each character on the console is represented in this region by a byte pair. The first byte in this
pair is simply the character itself. The second byte controls the foreground and background colors
used to draw the character. These byte pairs are stored in rowmajor order. For the console, there

13

should be 25 rows of 80 characters each. The location of videomemory, as well as the color
codes used for the second byte of each pair, are defined inlib/inc/video defines.h.

Writing a character to the console is as simple as writing a byte pair to video memory. To
write the character ’M’ as character seven of line four, you would do something likethis:

*(CONSOLE_MEM_BASE+4*CONSOLE_WIDTH+7)=’M’;
*(CONSOLE_MEM_BASE+4*CONSOLE_WIDTH+7+1=console_color;

WhereCONSOLE MEM BASE is the defined location of the console memory,CONSOLE WIDTH
is the width of the console in characters(80), andconsole color is a variable containing the
current foreground and background color.

It is also necessary to manipulate the cursor. The cursor is controlled by the Cathode Ray
Tube Controller(CRTC). Communication with the CRTC is accomplished with a special pair of
registers. The CRTC is one of those devices that is accessed through I/O ports. The two special
registers are an index register and a data register. The index register tells the CRTC what function
is to be performed, such as setting the cursor position. The data register then accepts a data
value associated with the operation. The data register is only one byte long, and the offset of the
cursor(which is measured in single bytes) is a two byte quantity, so setting the cursor position is
done in two steps. The commands to send to the CRTC, as well as the location of the CRTC I/O
ports, are defined inlib/inc/video defines.h. To hide the cursor completely, simply set the
cursor to an offset greater than the size of the console.

Now that communication with the console and CRTC is possible, a device driver for the
console can be written. Here is the API for the driver:

� char putbyte(char ch) - Writes a single character to the console at the location of
the cursor. Scrolls if necessary. Handles the special characters; a newline, a carriage return,
or a backspace.

� void putbytes(const char *s, int len) - Prints a strings of lengthlen starting
at the current cursor position. Iflen is not a positive integer ors is NULL, the function
has no effect.

� void set term color(int color) - Changes the foreground and background color
of future characters printed on the console. Ifcolor is invalid, the function has no effect.

� void get term color(int *color) - Writes the current foreground and background
color at the address specified bycolor.

� void set cursor(int row, int col) - Sets the position of the cursor to the position
(row, col). If the cursor is hidden, a call toset cursor() must not show the cursor.

� void get cursor(int *row, int *col) - Writes the current position of the cursor
into the argumentsrow andcol.

� void hide cursor() - Hides the cursor.

14

� void show cursor() - Shows the cursor.

� void clear console() - Clears the console.

� void draw char(int row, int col, int ch, int color) - Writes the character
ch to the console at position(row,col) with color color. Does not scroll or otherwise
modify the console.

4.3.3 Timer Device Driver Specification

The timer device driver is important as it is used to trigger the 410 kernel’s process scheduler.
Timer interrupts must be handled quickly, or the timer will generate the next timer interrupt
before the PIC has been reset, and that interrupt will be lost.

Communicating with the timer is done through I/O ports. These I/O ports are defined in
timer.h. Also defined inlib/inc/timer defines.h is the internal rate of the PC timer, 1193182
Hz. Fortunately, we can configure the timer give us interrupts at a fraction of that rate. For
convenience, you should configure the timer to generate interrupts every 10 milliseconds.

To initialize the timer, first set its mode by sendingTIMER SQUARE WAVE defined in
timer defines.h to TIMER MODE IO PORT defined in the same file. The timer will then expect
you to send it the number of timer cycles between interrupts.This rate is a two byte quantity, so
first send it the least significant byte, then the most significant byte. These bytes should be sent
to TIMER PERIOD IO PORT defined intimer defines.h.

When the timer interrupt occurs the processor consults the IDT to find out where the
timer handler is. The index into the IDT for the timer isTIMER IDT ENTRY, defined in
timer defines.h. You will need to complete this entry for your timer handler to execute
properly.

Aside from incrementing your tick counter, your timer interrupt handler should save and
restore the general purpose registers. You also need to tellthe PIC that you have processed the
most recent interrupt that the PIC delivered. This is done bysending anINT CTL DONE to one of
the PIC’s I/O ports,INT CTL REG. These are defined inlib/inc/interrupts.h.

Note: You will be testing this on an instruction set simulator. Even though you are simulating
an older processor on a relatively fast machine, Simics doesnot make an effort to exactly correlate
the simulation to real wall clock time. Your timer may appeara little wobbly in the simulator, but
it should be roughly accurate. If you have it set up properly,the timer will be exactly correct on
real hardware.

4.3.4 Keyboard Device Driver Specification

Like the timer, the keyboard is also interrupt driven. However we are not only interested in the
fact that a keyboard interrupt happened; each keyboard interrupt also has data that comes along
with it. The information retrieved from the keyboard also needs to be processed in order to
turn it into a stream of intelligible characters suitable for delivery to application processes. At a
high level, the keyboard device driver provides a buffer that contains characters returned by the
readchar() function.

15

One would think that reading keys from the keyboard would be as simple as receiving a
simple character stream. Unfortunately it is not that easy.For one thing, both key presses and
key releases are reported by the keyboard via interrupts. The other complicating factor is that the
data reported by the keyboard is in a special format called scan codes. These codes need to be
converted into normal ASCII characters. The support code provides a function that converts a
scan code into an ASCII character. This function (calledprocess scancode()) is described in
lib/inc/keyhelp.h.

The keyboard device driver has a very simple interface - it isjust one function,readchar().

� char readchar() - Returns the next character in the keyboard buffer. This function
does not block if there are no characters in the keyboard buffer. readchar() returns the
character in the buffer, or -1 if the keyboard buffer is currently empty.

4.3.5 Floating-Point Unit

Your processor comes equipped with a floating-point co-processor capable of amazing feats of
approximation at high speed. However, for historical reasons, the x86 floating-point hardware is
baroque. We will not require you to manage the user-visible state of the floating-point unit.

The bootstrapping code we provide will initialize the floating-point system so that any attempt
to execute floating-point instructions will result in a “device not present” exception (see the Intel
documentation for the exception number). You should do something reasonable if this occurs,
i.e., kill the offending user process (optional challenge:support floating-point).

5 Context Switching and Scheduling

5.1 Context Switching

Context switching is historically a conceptually difficultpart of this project. Writing a few
assembly language functions is usually required to achieveit.

In a context switch, the general purpose registers and segment selector registers of one process
are saved, halting its execution, and the general purpose registers and segment selector registers
of another process are loaded, resuming its execution. Also, the address of the page directory for
the process being switched to is loaded into%cr3.

It is suggested that a context switch always take place at thesame location. If a single function
performs a context switch, then the point of execution for every process not currently running is
inside that function. The instruction pointer need not be explicitly saved.

Before a process runs for the first time, meaningful context will need to be placed on its
kernel stack. A useful tool to set a process running for the first time is theIRET instruction. It is
capable of changing the code and stack segments, stack pointer, instruction pointer, andEFLAGS
register all in one step. Please see page 153 ofintel-sys.pdf for a diagram of what theIRET
instruction expects on the stack.

Please note that in kernel mode, context switches may not be deferred until a later time.

16

5.2 Scheduling

A simple round robin-scheduler is sufficient for the 410 kernel. The running time of the scheduler
should not depend on the number of processes currently in thevarious process queues in the
kernel. In particular, there are system calls that alter theorder in which processes run. These
calls should not cause the scheduler to run in anything otherthan constant expected time (but see
Section 9.1.1, “Encapsulation” below).

You should avoid a fixed limit on the number of processes. In particular, if we were to run
your kernel on a machine with more memory, it should be able tosupport more processes. Also,
your kernel should respond gracefully to running out of memory. System calls which would
require more memory to execute should receive error return codes. In the other direction, it is
considered legitimate for a Unix kernel to kill a process anytime it is unable to grow its stack
(optional challenge: can you do better than that?).

6 System Calls

6.1 The System Call Interface

The system call interface is the part of the kernel most exposed to user processes. User processes
will make requests of the kernel by issuing a software interrupt using theINT instruction.
Therefore, you will need to install one or more IDT entries tohandle system calls.

The system call boundary protocol (calling convention) will be the same for P3 as it was for
P2. Interrupt numbers are defined inlib/inc/syscall int.h.

6.2 System Call Specifications

6.2.1 Overview

The 410 kernel supports the basic process creation and control operations:fork(), exec(),
wait(), andexit(). It also supportssleep() andyield() functions, terminal I/O functions,
and a primitive threading facility.

6.2.2 Validation

Your 410 kernel must verify all arguments passed to system calls, and should return an integer
error code less than zero if any arguments are invalid. The kernelmay not kill a user process that
passes bad arguments to a system call, and itabsolutely may not crash.

The kernel must verify, using its virtual memory housekeeping information, that every pointer
is valid before it is used. For example, arguments toexec() are passed as a null terminated array
of C-style null terminated strings. Each byte of each stringmust be checked to make sure that it
lies in a valid region of memory.

17

6.2.3 The System Calls

Implement the following system calls in your kernel. Thoughthis should go without saying,
kernels missing system calls are unlikely to meet with strong approval from the course staff.
Except forminclone(), the prototypes listed here denote the interface exposed touser processes.

� int fork() - Creates a new child process as a copy of the calling process.On success, the
process ID of the child process is returned to the parent, andzero is returned to the child.
Note thatfork() makes a deep copy of the parent’s address space and gives it tothe child.

� int exec(char *execname, char **argvec) - Replaces the currently running
program in the calling process with the program stored in thefile namedexecname. The
argumentargvec points to a vector of arguments to pass to the new program as its argument
list. The new program receives these arguments as argumentsto its main() function.
The argument vector should be passed to theexec() system call formatted as a C style
argument vector, but this should be validated. The argumentvector should be passed to the
new program’smain() function as a C style argument vector, as the second argument. The
first argument to the new program’smain() function should be the length of the argument
vector. Be sure to be familiar with how C style argument vectors are formatted. Reasonable
limits may be placed on the number of arguments that a user program may pass toexec(),
and the length of each argument. Be sure to do as much validation as possible before
deallocating the old program’s resources. On success, there is no return from this call in
the calling program. If something goes wrong, an integer error code less than zero should
be returned.

� void exit(int status) - Terminates execution of the calling process immediately,and
saves the integerstatus for possible later collection by the parent through a call towait().
In the case that the process’ resources are not being shared,all resources used by the calling
process are reclaimed, except for the saved exit status. When a process with children or a
member of a thread group callsexit() or is aborted, the children or other threads should
continue to run normally. Orphans may either be reparented to theinit user process,
which contains a while loop aroundwait(), or may be told that they no longer have a
parent. Unix-like kernels use the former semantic, and alsosave the equivalent of the PCB
until wait() is called on the exited process.

� int wait(int *status ptr) - Collects the process ID and exit status returned by a child
process of the calling process. If the calling process has nochildren, an integer error code
less than zero is returned. Otherwise, if there are no exitedchildren waiting to be collected,
the calling process blocks until a child exits. The process ID of the child process is returned
on success, and its exit status is copied to the integer referenced bystatus ptr.

� int yield(int pid) - Defers off execution of the calling process to a time determined
by the scheduler, in favor of the process with process IDpid. If pid is -1, the scheduler
may determine which process to run next. The only processes whose scheduling should be
affected byyield() are the calling process, and the process that isyield()ed to. If the

18

process with process IDpid is not runnable, or doesn’t exist, then an integer error code
less than zero is returned. Zero is returned on success.

� int deschedule(int *reject) - Atomically checks the integer pointed to byreject.
If the integer is non-zero, the call returns immediately with return value zero. If the integer
pointed to byreject is zero, then the calling process will not be scheduled to runby the
scheduler until a call tomake runnable() on the calling process. An integer error code
less than zero is returned if reject is not a valid pointer.

� int make runnable(int pid) - Makes thedeschedule()d process with process IDpid
runnable by the scheduler. On success, zero is returned. Ifpid is not the process ID of a
process that calleddeschedule(), then an integer error code less than zero is returned.

� int minclone() - Except for return values, creates an exact copy of the calling process.
The PID of the created process is returned to the calling process. Zero is returned to the
created process. If something goes wrong, an error code lessthan zero is returned to the
calling process, and no new process is created. The calling process and the created process
share an address space. Subsequent calls by the calling or created processes to thefork()
or exec() system calls may be refused.

� int getpid() - Returns the process ID of the calling process.

� void *brk(void *addr) - Sets the break value of the calling process. The initial break
value of a process is the address immediately above the last address used for program
instructions and data. This call has the effect of allocating or deallocating enough memory
to cover only up to the specified address, rounded up to an integer multiple of the page size.
If addr is less than the break value when the program began execution, or if addr is within
four pages of the stack, the break point is not changed. The return value ofbrk() is always
the break value after the call has been performed, even if thebreak value does not change.

� int sleep(int ticks) - Deschedules the calling process until at leastticks timer
interrupts have occurred after the call. Returns immediately if ticks is zero. Returns
an integer error code less than zero ifticks is negative. Returns zero otherwise.

� char getchar() - Returns a single character from the character input stream. If the input
stream is empty the process is descheduled until a characteris available. If some other
process is descheduled on areadline() or getchar(), then the calling process must
block and wait its turn to access the input stream. Characters processed by thegetchar()
system call should not be echoed to the console.

� int readline(int len, char *buf) - Reads the next line from the console and copies
it into the buffer pointed to bybuf. If there is no line of input currently available, the calling
process is descheduled until one is. If some other process isdescheduled on areadline()
or agetchar(), then the calling process must block and wait its turn to access the input
stream. The length of the buffer is indicated bylen. If the length of the line exceeds the
length of the buffer, onlylen-1 characters should be copied intobuf. readline() should

19

NULL terminatebuf. Characters not placed in the buffer should remain available for other
calls toreadline() andgetchar(). The available line should not be copied intobuf
until there is a newline character available. If the line is smaller than the buffer, then the
complete line including the newline character is copied into the buffer. Characters that will
be consumed by areadline() should be echoed to the console immediately. If there is no
outstanding call toreadline() no characters should be echoed. Echoed user input may
be interleaved with output due to calls toprint(). The readline system call returns the
size of the line not including the NULL terminating character on success. An integer error
code less than zero is returned ifbuf is not a valid memory address, ifbuf falls in the text
section of the process, or iflen is unreasonably large.

N.B.1: The calling process shouldnot be scheduled every time a character is processed by
the keyboard interrupt handler.

� int print(int len, char *buf) - Prints the string pointed to bybuf to the console.
Only len characters of this string should be printed. The calling process should block until
all characters have been printed to the console. Output of two concurrentprint()s should
not be intermixed. Iflen is larger than some reasonable maximum or ifbuf is not a valid
memory address, an integer error code less than zero should be returned.

� int set term color(int color) - Sets the terminal print color for any future output to
the console. Ifcolor does not specify a valid color, an integer error code less than zero
should be returned. Zero is returned on success.

� int set cursor pos(int row, int col) - Sets the cursor to the location(row, col).
If the location is not valid, an integer error code less than zero is returned. Zero is returned
on success.

� int get cursor pos(int *row, int *col) - Writes the current location of the cursor
to the addresses provided as arguments. If the arguments arenot valid addresses, then an
error code less than zero is returned. Zero is returned on success.

� int ls(int size, char *buf) - Fills in the user-specified buffer with the names of
executable files stored in the system’s RAM disk “file system.” If there is enough room
in the buffer for all of the (null-terminated) file namesand an additional null byte after
the last filename’s terminating null, the system call will return the number of filenames
successfully copied. Otherwise, an error code less than zero is returned and the contents
of the buffer are undefined. For the curious among you, this system call is (very) loosely
modeled on the System Vgetdents() call.

� void halt() - Ends the simulation by calling the support functionSIM halt().

7 Building and Loading User Programs

1N.B. stands for “Nota Bene,” Latin for “note well,” or “pay attention.”

20

7.1 Building User Programs

User programs to be run on the 410 kernel should conform to thefollowing requirements. They
should be ELF formatted binaries such that the only sectionsthat must be loaded by the kernel
are the .text, .rodata, .data, and .bss sections (C++ programs, which have additional sections
for constructors which run before main() and destructors which run after main(), are unlikely to
work).

Programs may be linked against the 410-provided user-spacelibrary, andmust not be linked
against the standard C library provided on the host system. They should be linked statically, with
the .text section beginning at the lowest address in the useraddress space. The entry point for all
user programs should be themain() function found inuser/user tests/crt0.c.

7.2 Loading User Programs

The 410 kernel must read program data from a file, and load the data into a process’ address
space. Due to the absence of a file system, user programs will be loaded from large arrays
compiled directly into the kernel. A utility,exec2obj, has been provided; it takes as an argument
a list of files, and it creates a .c file containing one char array, named after the file, consisting of
the files’ data. The file is calleduser apps.c. It also contains a table of contents the format of
which is described ininc/exec2obj.h.

Later in the semester, there may be an opportunity to write a file system for the 410 kernel.
To facilitate an easy switch fromexec2obj to a file system, please use thegetbytes() skeleton
found inloader.c: it provides a crude abstraction which can be implemented ontop of either
user apps.c or a real file system.

Support code has also been provided inloader.c to extract the important information from
an ELF-formatted binary.elf check header() will verify that a specified file is an ELF binary,
andelf load helper() will fill in the fields of astruct se (“simplified ELF”) for you. Once
you have been told the desired memory layout for an executable file, you are responsible for
usinggetbytes() to transfer each executable file section to an appropriatelyorganized memory
region. You should zero out areas, if any, between the end of one region and the start of the next.
The bss region should begin immediately after the end of the read/write data region, and the heap
should begin on a page boundary.

Note: the .text and .rodata (read-only data) sections of theexecutable must be loaded into
memory which the process cannot modify.

8 The Programming Environment

8.1 Kernel Programming

The support libraries for the kernel include a simple C library, a list based dynamic memory
allocator, functions for initializing the processor data structures with default values, and functions
for manipulating processor data structures.

21

8.1.1 A Simple C Library

This is simply a list of the most common library functions that are provided. For details on using
these functions please see the appropriateman pages. Other functions are provided that are not
listed here. Please see the appropriate header files for a full listing of the provided functions.

Some functions typically found in a C I/O library are provided by lib/libstdio.a. The
header file for these functions islib/inc/stdio.h.

� int putchar(int c)

� int puts(const char *str)

� int printf(const char *format, ...)

� int sprintf(char *dest, const char *format, ...)

� int snprintf(char *dest, int size, const char *formant, ...)

� int sscanf(const char *str, const char *format, ...)

� void lprintf kern(const char *format, ...)

Some functions typically found in a C standard library are provided bylib/libstdlib.a.
The header files for these functions, inlib/inc, are stdlib.h, assert.h, malloc.h, and
ctype.h.

� int atoi(const char *str)

� long atol(const char *str)

� long strtol(const char *in, const char **out, int base)

� unsigned long strtoul(const char *in, const char **out, int base)

� void *malloc(size t size)

� void *calloc(size t nelt, size t eltsize)

� void *realloc(void *buf, size t new size)

� void free(void *buf)

� void smemalign(size t alignment, size t size)

� void sfree(void *buf, size t size)

� void panic(const char *format, ...)

� void assert(int expression)

22

The functionssmemalign() andsfree() manage aligned blocks of memory. That is, if
alignment is 8, the block of memory will be aligned on an 8-byte boundary. A block of memory
allocated with smemalignmust be freed withsfree(), which requires thesize parameter.
Therefore, you must keep track of the size of the block of memory you allocated. This interface
is useful for allocating things like page tables, which mustbe aligned on a page boundary. By
volunteering to remember the size, you free the storage allocator from scattering block headers
or footers throughout memory, which would preclude it from allocating consecutive pages.
sfree(void* p, int size) frees a block of memory. This blockmust have been allocated
by smemalign() and it must be of the specified size. Note that these memory allocation facilities
operateonly on memory inside the kernel virtual address range. Of course, functions with similar
names appear in user-space libraries; those functionsnever operate on kernel virtual memory.

Some functions typically found in a C string library are provided bylib/libstring.a. The
header file for these functions islib/inc/string.h.

� int strlen(const char *s)

� char *strcpy(char *dest, char *src)

� char *strncpy(char *dest, char *src, int n)

� char *strdup(const char *s)

� char *strcat(char *dest, const char *src)

� char *strncat(char *dest, const char *src, int n)

� int strcmp(const char *a, const char *b)

� int strncmp(const char *a, const char *b, int n)

� void *memmove(void *to, const void *from, unsigned int n)

� void *memset(void *to, int ch, unsigned int n)

� void *memcpy(void *to, const void *from, unsigned int n)

8.1.2 Processor Utility Functions

These functions access and modify processor registers and data structures. Descriptions of these
functions can be found elsewhere in this document.

� void disable interrupts()

� void enable interrupts()

� void set cr3(void *)

� void set cr3 nodebug(void *)

23

� void set esp0(void *)

� void *get esp0()

� void *sidt()

8.1.3 Makefile

The providedMakefile takes care of many of the details of compiling and linking thekernel. It
is important, however, to understand how it works. To build the kernel, list all object files that
need to be created underOBJS in kernel.mk. To build under AFS, build withmake afs. To build
on a computer with an internet connection, but not connectedto AFS, build withmake web. To
build on a standalone computer, build withmake offline.

8.2 User Programming

The same C library is provided for user programs. However, console output functions will not
work until theprint() system call is implemented. Also, a pseudo-random number generator is
provided as a user library.

9 Hints on Implementing a Kernel

9.1 Code Organization
� You may wish to invest in the creation of a trace facility. Instead of lprintf() calls scattered

at random through your code, you may wish to set up an infrastructure which allows you to
enable and disable tracing of a whole component at once (e.g., the scheduler) and/or allow
you to adjust a setting to increase or decrease the granularity of message logging.

� Some eventualities are genuinely fatal in the sense that there is no way to continue operation
of the kernel. If, for example, you happened to notice that one process had overflowed its
kernel stack onto the kernel stack of another process, thereis no way to recover a correct
execution state for that process, nor to free up its resources. In such a situation the kernel
is broken, and your job is no longer to arrange things likereturn(-1), but instead to stop
execution as fast as possible before wiping out data which could be used to find and fix the
bug in question. You will need to use your judgement to classify situations in to recoverable
ones, which you should detect and recover from, and unrecoverable situations (such as data
structure consistency failures), for which you shouldnot write half-hearted sort-of-cleanup
code.

You may find the C preprocessor symbolsFILE and LINE (and maybe even the
newfangled FUNCTION) useful to you in this regard. Note that those symbols begin and
end withtwo underline characters.

24

� Avoid common coding mistakes. Be aware thatgcc will not warn about possible unwanted
assignments inif, andwhile statements. Also, note the difference between!foo->bar,
and!(foo->bar). Practicing Pair Programming can help avoid these kinds of mistakes.

9.1.1 Encapsulation

Instead of typing linked-list traversal code 100 times throughout your kernel, thus firmly and
eternally committing yourselves to a linear-time data structure, you should attempt to encapsulate.
Don’t think of a linked list of processes; think of sets or groups of processes: live, runnable, etc.

Likewise, don’t write a 2,000-line page fault handler. Instead of ignoring the semantic
properties shared by pages within a region, use those properties to your advantage. Write smaller
page-fault handlers which encapsulate the knowledge necessary to handlesome page faults. You
will probably find that your code is smaller, cleaner, and easier to debug.

If you find yourself needing something sort of like a condition variable,don’t throw away the
modes of thought you learned in Project 2. Instead, use what you learned as an inspiration to
design and implement an appropriate similar abstraction inside your kernel.

Encapsulation can allow you to defer tricky code. Instead ofimplementing the “best” data
structure for a given situation, you may temporarily hide a lower-quality data structure behind an
interface designed to accomodate the better data structure. Once your kernel is stable, you can
go back and “upgrade” your data structures. While we will notgreet a chock-full-of-linked-lists
kernel or a wall-of-small-arrays kernel with cries of joy, and data structure design is an important
part of this exercise, achieving a complete, solid implementation is critical.

9.1.2 Method tables

You can practice modularity and interface-based design in a language without objects. In C this
is typically done via structures containing function-pointer fields. Here is a brief pseudo-code
summary of one basic approach (other approaches are valid too!):

struct device_ops {
void (*putchar)(void *, char);
int (*getchar)(void *);

};

struct device_ops serial_ops = {
serial_putchar, serial_getchar

};

struct device_ops pipe_ops = {
pipe_putchar, pipe_getchar

};

struct device_object {

25

struct device_ops *opsp;
void *instance_data;

};

void putchar(struct device_object *dp, char c)
{

(dp->opsp->putchar)(dp->instance_data, c);
}

void init(void)
{
struct device_object *d1, *d2;

d1 = new_pipe_object();
d2 = new_serial_object();

putchar(d1, ’1’); /* pipe_putchar(d1->instance_data, ’1’); */
putchar(d2, ’2’); /* serial_putchar(d2->instance_data, ’2’); */

}

9.1.3 Embedded Traversal Fields

Imagine a component is designed around a linked list. It may seem natural to re-invent the Lisp2

“cons cell”:

struct listitem {
struct listitem *next;
void *item_itself;

}

The problem with this approach is that you are likely to callmalloc() twice as often as you
should—once for each item, and once for the list-item structure. Sincemalloc() can be fairly
slow, this is not the best idea, even if you are comfortable dealing with odd outcomes (what if
you can allocate the list item but not the data item, or the other way around?).

Often a better idea is to embed the traversal structure inside the data item:

struct item_itself {
struct item_itself *next;
int field1;
char field2;

}
2or, for you young whippersnappers, ML

26

This cuts yourmalloc() load in half. Also, once you understand C well enough, it is possible
to build on this approach so you can write code (or macros) which will traverse a list of processes
or a list of devices.

Isn’t this an encapsulation violation? It depends...if “everybody knows” that your component
does traversal one way, that is bad. If only your component’sexported methods know the traversal
rules, this can be a very useful approach.

9.2 Process Initialization
� Process IDs- Each process must have a unique integer process ID. Since aninteger

allows for over two billion processes to be created before overflowing its range, sequential
numbers may simply be assigned to each process created without worrying about the
possibility of wrap-around – though real operating systemsdo worry about this. The
process ID must be a small, unique integer, not a pointer. Thedata structure used to
map a process ID to its process control block should not be inefficient in space or time.
This probably means that a hash table indexed by process ID should be used to store the
mapping from process IDs to PCBs.

� fork() - On afork(), a new process ID is assigned, the user context from the running
parent is copied to the child, and a deep copy is made of the parent’s address space. Sine
the CPU can only access memory by virtual addresses via page directories, both the source
and destination of a copy must be mapped at the same time. Bothaddress spaces need not
be mapped at the same time, however. The copy may be done piece-meal, since the address
spaces are already naturally divided into pages.

� exec() - On anexec(), the stack area for the new program must be initialized. The
stack for a new program begins with only one page of memory allocated. To complete the
initialization of the stack for a new program, the argument list must be copied above the
stack.

9.3 Kernel Initialization

Please consider going through these steps in thekernel main() function.

� Initialize the IDT entries for each interrupt that must be handled.

� Clear the console. The initialization routines will leave amess.

� Build a structure to keep track of which physical frames are not currently allocated.

� Build the initial page directory and page tables. Direct mapthe kernel’s virtual memory
space.

� Create and load the idle process. For grading purposes, you may assume that the “file
system” will contain an executable calledidle which you may run when no other process

27

is runnable. Or you may choose to hand-craft an idle process without reference to an
executable file.

� Create and load theinit process. For grading purposes, assume that the “file system”will
contain an executable calledinit which will run the shell (or whatever grading harness
we decide to run). During your development,init should probablyfork() a child that
exec()s the program inuser/410 tests/shell.c. It is traditional forinit to loop on
wait() in order to garbage-collect orphaned zombie processes; it is also traditional for it
to react sensibly if the shell exits or is killed.

� Set the first process running.

N.B. Suggesting thatkernel main implements these functions doesnot imply that it must do
so via straight-line code with no helper functions.

9.4 Requests for Help

Please do not ask for help from the course staff with a messagelike this:

I’m getting the default trap handler telling me I have a general protection fault.
What’s wrong?

or

I installed my illegal instruction handler and now it’s telling me I’ve executed an
illegal instruction. What’s wrong?

An important part of this class is developing your debuggingskills. In other words, when you
complete this class you should be able to debug problems which you previously wouuld not have
been able to handle.

Thus, when faced with a problem, you need to invest some time in figuring out a way to
characterize it and close in on it so you can observe it in the actual act of destruction. Your reflex
when running into a strange new problem should be to start thinking, not to start off by asking
for help.

Having said that, if a reasonable amount of time has been spent trying to solve a problem and
no progress has been made, do not hesitate to ask a question. But please be prepared with a list
of details and an explanation of what you have tried and ruledout so far.

10 Debugging

10.1 Kernel Debugging

There are a number of ways to go about finding bugs in kernel code. The most direct way for
this project is to use the Simics symbolic debugger. Information about how to use the Simics

28

debugger can be found in the documentation on the course website, and by issuing thehelp
command at the simics prompt.

Also available is theMAGIC BREAK macro defined in lib/inc/kerndebug.h. Placing this macro
in code will cause the simulation to stop temporarily so thatthe debugger may be used.

The function calllprintf kern() may also be used to output debugging messages to the
simics console, and to the file kernel.log. The prototype forlprintf kern() can be found in
lib/inc/stdio.h.

Also, please note that the kernel memory allocator is very similar to the allocator written by
15-213 students. If the allocator reports an “internal” consistency failure, this is overwhelmingly
likely to mean that the user of some memory overflowed it and corrupted the allocator’s meta-
data. In other words, even though the error isreported by lmm free, it is almost certainly not an
errorin lmm free.

10.2 User Process Debugging

Debugging user processes can be useful in the course of finding bugs in kernel
code. TheMAGIC BREAK macro is also available to user processes by#includeing the
user/inc/magic break.h header file.

The function calllprintf()may be used to output debugging messages from user programs.
Its prototype is inuser/lib/inc/stdio.h.

Symbolic debugging of user programs involves some set-up. Simics can keep track of
many different virtual memory spaces and symbol tables by associating the address of the page
directory with the file name of the program.

Simics must switch to the appropriate symbol table for the current address space as soon as a
new value is placed in%cr3. For this to work, you must do three things.

1. When a new program is loaded, register its symbol table with Simics with a call to
SIM register user proc(), defined inlib/inc/kerndebug.h.

2. When a program exits, please make a call toSIM unregister user proc() defined in the
same file.

3. Every time you switch user address spaces viaset cr3(), the Simics magic-break
instruction will be used to tell the Simics debugger to switch symbol tables. If you
believe you must change the value of%cr3 in assembly language, simply copy the relevant
instructions from theset cr3() we provide.

If you do not wish to enable debugging of user processes, simply do not register processes
with Simics, and use the macroset cr3 nodebug() instead ofset cr3().

11 Checkpoints

The kernel project is a large project spanning several weeks. Over the course of the project
the course staff would like to review the progress being made. For that reason, there are three

29

checkpoints that will be strictly enforced. The checkpoints exist so that important feedback can
be provided, and so should be taken very seriously.

11.1 Checkpoint One

After the first week of the project, pseudocode functions should be written for each system call,
and for the page fault handler. Also, the pseudocode functions should be commented so that
doxygen will produce HTML documentation. A draft version ofthe Process Control Block
structure should be written and documented in the same way asthe pseudocode functions. Source
and header files containing the system call pseudocode and documentation, and a header file
containing the PCB and documentation are to be handed in.

11.2 Checkpoint Two

After the second week of the project, it should be possible toload and run the idle program
provided in user/410 tests/idle.c. Also, virtual memory should be enabled, and the
keyboard, console and timer drivers should be integrated into the kernel.

11.3 Checkpoint Three

After the third week of the project, it should be possible to call theget pid() andbrk() system
calls from user processes. Also, it should be possible to load and run two user processes such that
the timer interrupt handler invokes the scheduler to context switch between the two processes at
regular intervals. A working page fault handler should be written. This probably means that the
majority of functions for manipulating virtual memory should be implemented.

12 Plan of Attack

A recommended plan of attack has been established. Hopefully, this will give some ideas about
how to start.

1. Read this handout and gain an understanding of the assignment. First, understand the
hardware, and then the operations that need to be implemented. Spend time becoming
familiar with all of the ways the kernel could be invoked. What happens on a transition
from user mode to kernel mode? What happens on a transition from kernel mode to user
mode?

2. Write pseudocode for the system calls as well as the interrupt handlers, paging system, and
context switcher. Start by writing down how all of these pieces fit together. Next, increase
the level of detail and think about how the pieces break down into functions. Then, write
detailed pseudocode.

30

3. Based on the above step, construct the Process Control Block(PCB). What should go in a
PCB? At this point, checkpoint one has been completed.

4. Write the timer interrupt handler. For now, simply verifythat the IDT entry is installed
correctly, and that the interrupt handler is running.

5. Write functions for the manipulation of virtual address spaces. Direct map the kernel’s
virtual memory space. Keep track of free physical frames. Figure out to allocate and
deallocate frames outside the kernel virtual space so they can be assigned to processes
(optional challenge: can you do this in a way which doesn’t consume more kernel virtual
space for management overhead as the size of physical memorygrows larger?).

6. Write a page fault handler that frames pages on legal accesses, and prints debugging
information on bad accesses.

7. Now that there is an initial page directory, it is possibleto enable paging. Do so, then write
the loader. Create a PCB for the idle process. Load and run theidle process. Verify that
timer interrupts are still occurring, and that the timer interrupt handler is sill being run.

8. Write functions for scheduling and context switching. Load a second process. Have the
timer interrupt handler context switch between the first andsecond processes.

9. Integrate the interrupt handler for the keyboard, and theconsole driver into the kernel.
Install an entry for it in the IDT. Keep in mind that the keyboard interrupt handler may
need to change later to support thegetchar() andreadline() system calls. At this point
checkpoint two has been completed.

10. Implement thegetpid() system call. Once this is working, the system call interfaceis
functioning correctly.

11. Implement thebrk() system call, and test it with the user processmalloc().

12. Implement thehalt() system call.

13. Fill out the page fault handler. Stack and Heap growth should now be supported. Processes
should be killed on bad memory accesses.

14. Implementfork(). Keep in mind the hints listed above.

15. Implementexec(). Testfork() andexec() by having an init process spawn a third user
process.

16. Implementwait(), andexit(). Please take care thatexit() is not grossly inefficient.

17. Implement thereadline() system call.

18. Implement theprint(), set term color(), andset cursor pos() system calls. At this
point, the shell should run.

31

19. Implementminclone(), and test it using the thread library.

20. Implement theyield(), deschedule(), andmake runnable() system calls.

21. Implement thesleep() system call. Recall that the scheduler must run in constant time.

22. Implement thegetchar() system call.

23. Write many test cases for each system call. Try to break the kernel.

24. You’re done! Celebrate!

32

	Introduction
	Overview
	Goals
	Technology Disclaimer
	Important Dates
	Groups
	Grading
	Hand-in

	Hardware Primitives
	Pivilege Levels
	Segmentation
	Special Registers
	The Segment Selector Registers
	The EFLAGS Register
	Control Registers
	The Kernel Stack Pointer
	C interface

	Paging
	The Layout of Physical Memory

	The Boot Process
	Device Drivers and Interrupt Handlers
	The Interrupt Descriptor Table
	Interrupts, Faults, and Exceptions
	Hardware Interrupts
	Software Interrupts
	Faults and Exceptions
	Configuring Interrupts
	Writing an Interrupt Handler
	Disabling Interrupts

	Device Drivers
	Communicating with Devices
	Console Device Driver Specification
	Timer Device Driver Specification
	Keyboard Device Driver Specification
	Floating-Point Unit

	Context Switching and Scheduling
	Context Switching
	Scheduling

	System Calls
	The System Call Interface
	System Call Specifications
	Overview
	Validation
	The System Calls

	Building and Loading User Programs
	Building User Programs
	Loading User Programs

	The Programming Environment
	Kernel Programming
	A Simple C Library
	Processor Utility Functions
	Makefile

	User Programming

	Hints on Implementing a Kernel
	Code Organization
	Encapsulation
	Method tables
	Embedded Traversal Fields

	Process Initialization
	Kernel Initialization
	Requests for Help

	Debugging
	Kernel Debugging
	User Process Debugging

	Checkpoints
	Checkpoint One
	Checkpoint Two
	Checkpoint Three

	Plan of Attack

