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1 Introduction

This document will serve as a guide in completing the 15-4d&l project. The goal of this
document is to supply enough information to complete thgeptavithout getting bogged down
in implementation details. Information contained in leetnotes, or in the Intel documentation
will be repeated here only sparingly, and these sourcesoftéh be referenced, so keep them
handy. Good luck!

1.1 Overview

This project will require the design and implementation djrix-like kernel. The 410 kernel
will support multiple virtual memory address spaces viaipggpreemptive multitasking, and a
small set of important system calls. Also, the kernel wilbgly device drivers for the keyboard,
the console, and the timer.

1.2 Goals

Acquiring a deep understanding of the operation of a Urkg-kernel through the design
and implementation of one.

Gaining experience reading technical specifications sa¢healntel documentation.

Debugging kernel code. Virtual memory, interrupts, andctwrency concerns add
complexity to the debugging process.

Working with a partner. Learning how to program as a team(Paigramming, division
of labor, etc.). Using source control.

1.3 Technology Disclaimer

Because of the availability, low cost, and widespread ugb@&86 architecture, it was chosen
as the platform for this sequence of projects. As its creatoel Corporation has provided much
of the documentation used in the development of these fsojéa its literature Intel uses and
defines terms like interrupt, fault, etc.. Ontop of this tBé architecture will be the only platform
used in these projects.

The goal of this project set is certainly not to teach thesgiwrasies of the x86 architecture
(or Intel's documentation). That said, it will be necessarpecome accustomed to the x86 way
of doing things, and the Intel nomenclature, for the purpadeompleting this project set. Just
keep in mind that the x86 way of doing things is not the only wagloing things. It is the price
to be paid for learning the principles of operating systemsageal world system instead of a
simulated architecture.



1.4 Important Dates

Friday, October 3: Project 3 begins

Friday, October 10: Checkpoint 1 due (standard turn-in gdoce).

Monday, October 20: Checkpoint 2 due (we will probably harttis via 5-minute mini-
interviews).

Friday, November 14: Project 3 due

1.5 Groups

The kernel project is a group assignment. You should alrdedin a group of two from the
previous project. If you are not in a group, or you are havitigeogroup difficulties, send email
to staff-410@cs.cmu.edu.

1.6 Grading

The primary criteria for grading are correctness, desigd,style. A correct kernel implements
the provided specification. Correctness also includesstoless. A robust kernel does not
crash (no matter what instructions are executed by useepses), handles interesting corner
cases correctly, and recovers gracefully from errors. Al wesigned kernel is organized in
an intuitive and straightforward way. Functionality is aeggted between different source files.
Global variables are used when appropriate (they are mpreppate in OS kernels than in most
programs), but not to excess (basically, consider the cosepe). Appropriate data structures
are used when needed. A kernel with good style is readablme $oted deviations from what
may be generally considered to be good style will be perdli2éso, poorly commented, hard-
to-read code will be penalized, as will a project that doedaltow the prescribed build process.

1.7 Hand-in

The hand-in directories will be created as the due date nédwse specific instructions will
be provided at that time. Subject to later instructionsng@hand in all source files, header
files, and Makefiles that you generate. Plan to keep to ydudsdd image files, editor-generated
backup files, log files, etc.

2 Hardware Primitives

2.1 Pivilege Levels

The x86 architecture supports four pivilege levels, PL@tigh PL3. Lower privilege numbers
indicate greater privilege. The kernel will run at PLO. Upescesses will run at PL3.



2.2 Segmentation

A segment is simply a region of the address space. Two nopabfeerties can be associated with
a segment: the pivilege level, and whether the segmentiosntade, stack, or data. Segments
can be defined to span the entire address space.

The 410 kernel will use segmentation as little as possilihe. XIB6 architecture requires some
use of segmentation, however. Installing interrupt haisdland managing processes requires
some understanding of segmentation.

In the 410 kernel, there will be four segments. These foumsggs will each span the entire
address space. Two of them will require that the privilegellbee set to PLO to be accessed, and
two will require that the privilege level be set to PL3 or lawte be accessed. For each pair of
segments, one will be code and one will be data.

2.3 Special Registers

This project requires an understanding of some of the x86gssnr data structures. This section
will cover some important structures that the kernel mustimaate in order to function properly.

2.3.1 The Segment Selector Registers

There are six segment selector registéts, %6s, %s, %es, % s, and%gs. A segment selector

is really an index into another processor data structutect#te Global Descriptor Table(GDT).
The GDT is where the segments are actually defined. The pmrdwstartup code sets up the
segment descriptors in the GDT, but it is the resposibilitthe kernel to have the correct values
in the segment selector registers on entering and leaviangdimel. The code segment selector
for the currently running process is stored%s. The stack segment selector for the currently
running process is stored #ss. It is possible to specify up to four data segment seleciisy
are%s through%gs. The code segment selector is used to access instructibastdck segment
selector is used in stack related operations@ldSH, POP, etc.). The data segment selectors are
used in all other operations that access memory.

On entering theker nel _mai n() function, the kernel and user segments have already been
installed into the GDT. When a user process is started, egel tode, stack, and data segment
selectors need to be specified and loaded into the segmeaot®@akegisters. When a user process
takes an interrupt, the code and stack segment selectstaegwill be saved automatically. The
data segment selector registers and the general purpasteregvill not be saved automatically,
however.

For more information on the GDT and segmentation pleasaosec?.1, 2.4, and 3.2 of
i ntel -sys. pdf and the segmentation handout on the 15-410 web site.

2.3.2 The EFLAGS Register

The EFLAGS register controls some important processor state. It wal recessary to
provide the correct value for thEFLAGS register when starting the first user process, so it



is important to understand its format. THEELAGS register is discussed in section 2.3 of
i ntel-sys.pdf. ['ib/inc/x86/eflags.h contains useful definitions. The bootstrap process
setsEFLAGS to an appropriate value, available to you via tiegt eflags() macro from

|'i b/irc/x86/proc_reg. h, for your kernel execution. Before entering user mode yourveied

to arrange for bit 1 (“reserved”) to be 1, and should arrancetfel F andl OPL_USER bits to be
set. The first method you think of for doing this may not be igatrmethod.

2.3.3 Control Registers

e Control Register Zeré€r 0): This control register contains the most powerful systemgd]
The 410 kernel will only be concerned with bit 31, which aates paging when set, and
deactivates it when unset. Paging is discussed below. Damadify the state of any of the
other bits.

e Control Register Oné&€r 1): This control register is reserved and should not be todiche

e Control Register Twdfer 2): When there is a page fauligr 2 will contain the address that
caused the fault. This value will be needed by the page famtiler.

e Control Register Threé€r 3): This control register is sometimes known as the Page
Directory Base Register(PDBR). It holds the address of tireeat page directory in its
top 20 bits. Bits 3 and 4 control some aspects of caching aadldtboth be unset. The
%r 3 register will need to be updated when switching addressespatiriting to théder 3
register invalidates entries for all pages in the TLB notkedrglobal.

e Control Register Foutgr 4): This control register contains a number of extension flags
that can be safely ignored by the 410 kernel. Bit 7 is the PadgbabEnable(PGE) flag.
This flag should be set for reasons discussed below.

2.3.4 The Kernel Stack Pointer

In the x86 architecture, the stacks for user level code antekéevel code are separate. When an
interrupt occurs that transitions the current privilegel®f the process to kernel mode, the stack
pointer is set to the top of the kernel stack. A small amoubaotext information is then pushed
onto the stack to allow the previously running process tamesonce the interrupt handler has
finished.

The value of the stack pointer when we enter kernel mode isetfy the currently running
task. Tasks are a hardware process mechanism provided k@@reechitecture. The 410 kernel
will not use tasks. It is faster to manipulate the processratison in software. It is necessary,
however, to define at least one task. This takes place in tbiestoapping code, before execution
of theker nel _mai n() function begins. The provided functiset _esp0() will modify the initial
kernel stack pointer. This function is defined inb/ x86/ seg. c.



2.3.5 Cinterface

There are inline assembly macros defineliib/ i nc/ x86/ pr oc_r eg. h, that can be used to read
and write many of the processor’s registers.

2.4 Paging

The x86 architecture uses a two-level paging scheme withkidabyte pages. It is also possible
to use larger page sizes. The top level of the paging streitswralled the page directory, while
the second level consists of objects called page tables. farheat of the entries in the page
directory and page tables are very similar, however, thelidgihave slightly different meaning.
Here is the format of both a page directory entry and a pade &attry.

Entries in both tables use the top twenty bits to specify airegs. A page directory entry
specifies the virtual memory address of a page table in théatepty bits. A page table entry
specifies the number of a physical frame in the top twenty Bisth page tables and physical
frames must be page aligned. An object is page aligned if ¢l twelve bits of the lowest
address of the object are zero.

The bottom twelve bits in a page directory or page table earyflags.

e Bit O: This is the present flag. It has the same meaning in batfe plirectories and page
tables. If the flag is unset, then an attempt to read, writegxecute data stored at an
address within that page(or a page that would be referencéuemot present page table)
will cause a page fault to be generated. On installing a ney& fable into a page directory,
or framing a virtual page, the preset bit should be set.

e Bit 1: This is the read/write flag. If the flag is set, then thg@#s writable. If the flag is
unset then the page is read-only, and attempts to write aulse a page fault. This flag has
different meanings in page table and page directory entBeg the table on page 136 of
i ntel -sys. pdf for details.

e Bit 2: This is the user/supervisor flag. If the flag is set, thie® page is user accessible.
This flag has different meanings in page table and page diyeentries. See the table on
page 136 of nt el - sys. pdf for details.

e Bit 3: This is the page-level write through flag. If it is setjt®-through caching is enabled
for that page or page table, otherwise write-back cachingeésl. This flag should be left
unset.

e Bit 4: This is the page-level disable caching flag. If the flaget, then caching of the
associated page or page table is disabled. This flag shougdthmset.

e Bit 5: This is the accessed flag. It is set by the hardware wherpage pointed to by a
page table entry is accessed. The accessed bit is set in aipag®ry entry when any of
the pages in the page table it references are accessed.athisdly be ignored by the 410
kernel.



e Bit 6: This is the dirty flag. It is only valid in page table eles. This flag is set by the
hardware when the page referenced by the page table entritiensto. This flag can be
used to implement demand paging. However, this flag may e égiby the 410 kernel.

e Bit 7: This is the page size flag in a page directory entry, &iedpiage attribute index flag
in a page table entry. Because the 410 kernel uses four kdgiages all of the same type,
both of these flags should be unset.

e Bit 8: This is the global flag in a page table entry. This flag hasmeaning in a page
directory entry. If the global flag is set in a page table erttrgn the virtual-to-physical
mapping will not be flushed from the TLB automatically whentimg %r 3. This flag
should be used to prevent the kernel mappings from beingdtush context switches. To
use this bit, the page global enable flag@m 4 must be set.

e Bits 9, 10, 11: These bits are left available for use by saféwaTlhey can be used to
implement demand paging. The 410 kernel may ignore these bit

2.5 The Layout of Physical Memory

Although there are many ways to partition physical memdrwy 410 kernel will use the following
model. The bottom 16MB of physical memory (from address @x@ddress Oxffffff, i.e., just
underUSER_ MEM START as defined by i b/ i nc/ x86/ seg. h), is reserved for the kernel. This
kernel memory should appear as the bottom 16MB of each pscéstual address space (that
is, the virtual-to-physical mapping will be the identitynittion for the first 16 megabytes; this is
known as “direct mapping”, or “V=R” in the IBM mainframe wai).

Note that user processes should not be able to read from te terkernel memory, even
though it is resident at the bottom of each user process’eaddspace. In other words, like the
“black hole” between the top of the heap and the bottom of theks there should also be a
“black hole” from O to Oxffffff.

The rest of physical memory, i.e. from 0x1000000 up, showddubed for frames. In
l'i b/inc/x86/ seg. hisa prototype for a functionnt machi ne_phys_f ranes(voi d), provided
by | i b/ x86/ seg. ¢, which will return to you the number dfAGE_SI ZE-sized frames supported
by the simics virtual machine you will be running ®AGE_SI ZE and the appropriateAGE_SH FT
are located if i b/ i nc/ page. h). This frame count will include both kernel frames and user
memory frames.

Please note that the memory-allocation functions disclbstow (e.g.jmal | oc() ) manage
only kernel virtual pages. You are responsible for defining anglémenting an allocator
appropriate for the task of managing free physical frames.

3 The Boot Process

The boot process is somewhat complicated, and it is not sageso fully understand it
in order to complete this project. To learn more about thet pvocess, please read about



the GRUB boot loaderhft p: // wwwv. gnu. or g/ sof tware/ grub/). This is the boot loader
that will be used to load the 410 kernel. The 410 kernel coesplivith the Multiboot
specification as defined &t tp://wwmv. ncc. ac. uk/ grub/ mul tiboot toc. htm . After the
boot loader finishes loading the kernel into memory, it ire®khe functiomul t i boot _nai n()

in i b/ multiboot/baes_nultiboot_main.c. The support code ihi b/ mul ti boot ensures
that the 410 kernel follows the Multiboot specification tisizes processor data structures with
default values, and calls the 4k6r nel _mai n() function.

A memory map of the system is stored in a list of range desusphat is pointed to by the
information handed to the kernel by the multiboot initiation functions. The relevant structures
are defined ini b/ i nc/ mul ti boot . h. This information should be used when setting up the list
of free physical frames, and in determining the amount of mgravailible in the system.

4 Device Drivers and Interrupt Handlers

4.1 The Interrupt Descriptor Table

The Interrupt Descriptor Table(IDT) is a processor datacstire that the processor reads when
an interrupt is received. Interrupts are delivered to tlee@ssor by the Programmable Interrupt
Controller(PIC) described below. The table contains amat®e for each interrupt. A descriptor
contains information about what should happen when anringeis received. Importantly, it
contains the address of the handler for that interrupt. Aerinpt handler is a function that
performs a set of actions appropriate for the kind of intetrtbat was issued. Once the processor
locates the appropriate entry in the IDT, it saves infororasuch that after the interrupt handler
returns, it can resume what it was doing before the intermget issued. The PIC delivers
interrupts to the processor over Interrupt Request(IRQgsli Note that IRQ numbers do not
necessarily map to matching indeces into the IDT. PICs hawebility to map their IRQ lines
to any entries in the IDT. For more information about intetgy the IDT, and the PIC, please see
chapter 5 of nt el - sys. pdf.

4.2 Interrupts, Faults, and Exceptions
4.2.1 Hardware Interrupts

When a packet arrives at a network interface, the user gadsey on the keyboard or moves the
mouse, or any other type of event occurs at a hardware deliatsjevice needs a way of getting
the attention of the kernel. One way is for the kernel to kesiqiray the device if it has something
new to report (either periodically or continuously). Thescalled polled I/O. This is wasteful of
CPU time. Modern kernels take advantage of hardware irgesru

When a device wants to raise a hardware interrupt, it comoaies this desire to one of
two PICs by asserting some control signals on interruptestjlines. The PICs are responsible
for serializing the interrupts (taking possibly concutrgnierrupts and ordering them), and then
communicating the interrupts to the processor throughiapeontrol lines. The PICs tell the
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processor that a hardware interrupt has occurred, as weallhash request line the interrupt
occurred on so the processor knows how to handle the interitigere are some conventions
as to what devices are associated with what interrupt rédjoes.

The PIC chip used in older IBM compatible PCs only has 8 IR@dinThis proves to be
limiting, so a second PIC is daisy chained off of the first anenbore recent machines. When an
interrupt is triggered on the second PIC, it in turn triggansnterrupt on the first PIC (on IRQ 2).
The interrupt is then communicated to the processor.

4.2.2 Software Interrupts

Hardware interrupts are not the only type of interrupt. Paogs can issue software interrupts
as well. These interrupts are often used as a way to trangémugon to the kernel in a
controlled manner, for example during a system call. Toqyerfa software interrupt a user
application will execute a special instruction\[), which will cause the processor to execute
the nth handler in the IDT. In addition to hardware and sofeaaterrupt handlers, the IDT also
contains information about exception handlers. Exceptame conditions in the processor that
are usually unintended and need to be addressed. Page fhvitie-by-zero, and segmentation
faults are all types of exceptions.

4.2.3 Faults and Exceptions

Please read section 5.3iaft el - sys. pdf on Exception Classifications. Note that entries exist
in the IDT for faults and exceptions. The 410 kernel shoulddia the following exceptions:
Division Error, Device Not Preserijvalid Opcode, Alignment Check, General Protection Fault
and Page Fault. On each of these exceptions, the kerneldsteqdrt the virtual address of the
instruction that caused the exception, along with any atblevent information(ie. the faulting
address on a Page Fault if the user process will be killed &kéhnel).

4.2.4 Configuring Interrupts

As mentioned previously, an x86 processor uses the IDT tdi@dddress of the proper interrupt
handler when an interrupt is issued. To install interrugat}tf and exception handlers entries need
to be installed in the IDT.

An IDT entry can be one of three different types: a task gateingerrupt gate, or a trap
gate. Task gates make use of the processor's hardware tashisg functionality, and so
are inappropriate for the 410 kernel. Interrupt gates digsatberrupts on entering the interrupt
handler, and so are also inappropriate as the 410 kernedésrutable. The 410 kernel uses trap
gates for all of its interrupts.

The format of the trap gate is on page 151 of el - sys. pdf . Note that regardless of the
type of the gate, the descriptor is 64 bits long. To find outlibhse address of the IDT, the
instruction SIDT can be used. A C wrapper around this insivags defined in the support code
inlib/x86/seg.c. The prototype can be foundimb/ i nc/ x86/ seg. h.
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The purpose of some of the fields of a trap gate are not obvidhe.DPL is the privilege
level required to execute the handler. The offset is theuairaddress of the handler. The
Segment Selector should be set to the segment selectorddariet code segment. This is
KERNEL _CS_SEGSEL defined inl i b/ i nc/ x86/ seg. h.

4.2.5 Writing an Interrupt Handler

As mentioned above, when the processor receives an interiuges the IDT to start executing
the interrupt handler. Before the interrupt handler exesutowever, the processor pushes some
information onto the stack so that it can resume its previasis when the handler has completed.
The exact contents and order of this information is preseotepage 153 afnt el - sys. pdf .

This information is indeed enough to resume executing wieateode was running when the
interrupt first arrived. However, in order to service theemipt we need to execute some code;
this code will clobber the values in the general purposestergs. When execution in normal code
resumes, that code will expect to see the same values ingistaes, as if no interrupt had ever
occurred. So the first thing an interrupt handler must dovs sl the general purpose registers,
plus%ebp.

The easiest way to save these registers is to just save thehe atack. This is easily done
with the PUSHA and POPA instructions (more information on these instructions carfdund on
pages 624 and 576 oht el -i sr. pdf). To be sure that the registers are saved before anything
else occurs, assembly wrappers for the interrupt handhersld be written. All that must be
done in assembly is saving the registers, calling the C leantien restoring the registers. To
return from an interrupt, use tR&ET instruction. It uses the information initially saved on the
stack by the interrupt to return to the code that was exegutimen the interrupt occurred.

A final note about writing assembly: comment assembly codépely. One comment per
instruction is not a bad rule of thumb. Keep your assemblyejpasate files, and to export a
symbol (likeasmt i mer _wr apper) so you can refer to it elsewhere, use the assembler dieectiv
. gl obl, like this:

.globl asmtimer_w apper

4.2.6 Disabling Interrupts

The 410 kernel has a number of critical sections. It may bessary to disable interrupts to
protect these critical sections. Interrupts can be disabjethe macrali sabl e_i nt err upt s()
defined inl i b/ i nc/ x86/ proc_reg. h, or by theCLI instruction. Interrupts can be enabled by
the macrcenabl e_i nt errupt s() defined in the same file, or by ti$&1 instruction.

The simulator is programmed to log how long interrupts amablied. Note that the C
macros referenced above issue the Simics magic instructiemr convenience, macros have
also been written to replace thH&l and STl instructions. These macros are defined in
l'ib/inc/x86/cli_sti.asmh. This file must be #i ncl uded in each assembly file in which
theCLl or STI instructions appear.
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The log filei nt s. | og is stored whersl Mhal t () is called. This function should be used to
implement thehal t () system call. If interrupts are disabled for an especialhgltime, a note
of it is made in the log file.

Your 410 kernel should be as preemptible as possible. Themthat, ideally, no matter
what code sequence is running, whether in kernel mode omosde, when an interrupt arrives
it can be handled and can cause an immediate context switgbpiopriate. In other words,
if an interrupt signals the completion of an event that somoegss is waiting for, it should be
possible for your kernel to suspend the interrupted proaedsesume the waiting process so that
returning from the interrupt activates the waiting proaedker than the interrupted process.

To do this, you will need to strive to arrange that as much waslpossible is performed
within the context of a single process’s kernel executiorirenment without dependencies on
other processes. When race conditions with other procassemavoidable, try to structure your
code so that interrupts are disabled for multiple shortquerof time rather than one long period
of time.

A portion of your grade will depend on how preemptible yourriad is.

4.3 Device Drivers
4.3.1 Communicating with Devices

There are two ways to communicate with a device in the x86itature. The first is to send
bytes to an 1/O port. The second is through memory-mapped I/O

Most devices in the x86 architecture are accessed thro@hptits. These ports are
controlled by special system hardware that has access tbathe address, and control lines on
the processor. By using special hardware instructionsa aad write from these ports, 1/0 ports
can be used without infringing upon the normal address spitee kernel or user applications.
This is because these special instructions tell the haedthat this memory reference is actually
an 1/O port, not a traditional memory location. For more mfiation on 1/O ports, consult
chapter 10 of intel-arch.pdf. Both the timer and the keydasse 1/0O ports. For convenience,
an assortment of C wrapper functions is provided for readimg) writing 1/0 ports. These are
located inl i b/ i nc/ x86/ pi 0. h.

There are also some devices which are accessed by readingréimgy special addresses
in traditional memory (memory-mapped 1/O). This part of noeynis part of the regular address
space and therefore needs to be carefully managed. Thelearses memory-mapped I/O (along
with some 1/O ports for things like cursor position).

4.3.2 Console Device Driver Specification

The contents of the console are controlled by a region of mmmory (memory mapped 1/O).
Each character on the console is represented in this regi@anbyte pair. The first byte in this
pair is simply the character itself. The second byte costio foreground and background colors
used to draw the character. These byte pairs are stored imegar order. For the console, there
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should be 25 rows of 80 characters each. The location of wdemory, as well as the color
codes used for the second byte of each pair, are definddin nc/ vi deo_def i nes. h.

Writing a character to the console is as simple as writingte pgir to video memory. To
write the characteiM as character seven of line four, you would do somethingthks:

* ( CONSOLE_MEM BASE+4* CONSOLE_W DTH+7) ="' M :
* ( CONSOLE_MEM BASE+4* CONSCLE_W DTH+7+1=consol e_col or;

Where CONSOLE_VEM BASE is the defined location of the console memd@NSOLE W DTH
is the width of the console in characters(80), andsol e_col or is a variable containing the
current foreground and background color.

It is also necessary to manipulate the cursor. The cursasntaled by the Cathode Ray
Tube Controller(CRTC). Communication with the CRTC is anptished with a special pair of
registers. The CRTC is one of those devices that is accelsmaph 1/0 ports. The two special
registers are an index register and a data register. Thg redester tells the CRTC what function
is to be performed, such as setting the cursor position. Hie kgister then accepts a data
value associated with the operation. The data registerysame byte long, and the offset of the
cursor(which is measured in single bytes) is a two byte dtyasb setting the cursor position is
done in two steps. The commands to send to the CRTC, as wélédsdation of the CRTC I/O
ports, are defined ihi b/ i nc/ vi deo_def i nes. h. To hide the cursor completely, simply set the
cursor to an offset greater than the size of the console.

Now that communication with the console and CRTC is possidldevice driver for the
console can be written. Here is the API for the driver:

e char putbyte( char ch ) - Writes a single character to the console at the location of
the cursor. Scrolls if necessary. Handles the special cteaga a newline, a carriage return,
or a backspace.

e void putbytes( const char *s, int len ) - Prints a string of lengthl en starting
at the current cursor position. llen is not a positive integer a is NULL, the function
has no effect.

e void set _termcolor( int color ) - Changes the foreground and background color
of future characters printed on the consolecdfor is invalid, the function has no effect.

e void get termcolor( int *color ) - Writes the current foreground and background
color at the address specified &yl or .

e void set _cursor( int row, int col ) -Setsthe position of the cursor to the position
(row, col). Ifthe cursor is hidden, a call &et _cur sor () must not show the cursor.

e void get cursor( int *row, int *col ) - Writes the current position of the cursor
into the argumentsow andcol .

e voi d hide_cursor() - Hides the cursor.
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e voi d show_cursor() - Shows the cursor.
e voi d cl ear _consol e() - Clears the console.

e void drawchar( int row, int col, int ch, int color ) - Writes the character
ch to the console at positiofr ow, col ) with colorcol or. Does not scroll or otherwise
modify the console.

4.3.3 Timer Device Driver Specification

The timer device driver is important as it is used to trigder 410 kernel’'s process scheduler.
Timer interrupts must be handled quickly, or the timer wdéingrate the next timer interrupt
before the PIC has been reset, and that interrupt will be lost

Communicating with the timer is done through I/O ports. Eh&® ports are defined in
timer.h. Also defined ihi b/ i nc/ti mer defi nes. histhe internal rate of the PC timer, 1193182
Hz. Fortunately, we can configure the timer give us intesgita fraction of that rate. For
convenience, you should configure the timer to generateriugts every 10 milliseconds.

To initialize the timer, first set its mode by sendifigf MER SQUARE WAVE defined in
ti mer _defines. h to TI MER.MODE_I O_PORT defined in the same file. The timer will then expect
you to send it the number of timer cycles between interruplss rate is a two byte quantity, so
first send it the least significant byte, then the most siganifibyte. These bytes should be sent
to TI MER_PERI OD_l O_PORT defined int i mer _def i nes. h.

When the timer interrupt occurs the processor consults e tb find out where the
timer handler is. The index into the IDT for the timer T$ MER.I DT_ENTRY, defined in
tinmer _defines.h. You will need to complete this entry for your timer handler eéxecute
properly.

Aside from incrementing your tick counter, your timer imtgyt handler should save and
restore the general purpose registers. You also need tineeRIC that you have processed the
most recent interrupt that the PIC delivered. This is donsdnding an NT_CTL_DONE to one of
the PIC’s I/O ports| NT_CTL_REG. These are defined in b/ i nc/interrupts. h.

Note: You will be testing this on an instruction set simutatéven though you are simulating
an older processor on a relatively fast machine, Simics doesake an effort to exactly correlate
the simulation to real wall clock time. Your timer may appadittle wobbly in the simulator, but
it should be roughly accurate. If you have it set up propéhig,timer will be exactly correct on
real hardware.

4.3.4 Keyboard Device Driver Specification

Like the timer, the keyboard is also interrupt driven. Hoerewe are not only interested in the
fact that a keyboard interrupt happened; each keyboartiptealso has data that comes along
with it. The information retrieved from the keyboard alsceds to be processed in order to
turn it into a stream of intelligible characters suitable delivery to application processes. At a
high level, the keyboard device driver provides a buffet ttemntains characters returned by the
readchar () function.
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One would think that reading keys from the keyboard would besienple as receiving a
simple character stream. Unfortunately it is not that e&sy. one thing, both key presses and
key releases are reported by the keyboard via interrupts offier complicating factor is that the
data reported by the keyboard is in a special format callad sodes. These codes need to be
converted into normal ASCII characters. The support codeiges a function that converts a
scan code into an ASCII character. This function (cafiedcess_scancode() ) is described in
l'i b/inc/keyhel p. h.

The keyboard device driver has a very simple interface -jissone functionr eadchar () .

e char readchar() - Returns the next character in the keyboard buffer. Thigtion
does not block if there are no characters in the keyboarebuféadchar () returns the
character in the buffer, or -1 if the keyboard buffer is catheempty.

4.3.5 Floating-Point Unit

Your processor comes equipped with a floating-point cogssor capable of amazing feats of
approximation at high speed. However, for historical reasthe x86 floating-point hardware is
baroque. We will not require you to manage the user-visitatef the floating-point unit.

The bootstrapping code we provide will initialize the flo@tipoint system so that any attempt
to execute floating-point instructions will result in a “de® not present” exception (see the Intel
documentation for the exception number). You should do $oimg reasonable if this occurs,
i.e., kill the offending user process (optional challenggpport floating-point).

5 Context Switching and Scheduling

5.1 Context Switching

Context switching is historically a conceptually difficydart of this project. Writing a few
assembly language functions is usually required to achieve

In a context switch, the general purpose registers and sggelector registers of one process
are saved, halting its execution, and the general purposstees and segment selector registers
of another process are loaded, resuming its execution, Alsaddress of the page directory for
the process being switched to is loaded i#t03.

Itis suggested that a context switch always take place atime location. If a single function
performs a context switch, then the point of execution fargyprocess not currently running is
inside that function. The instruction pointer need not bglieily saved.

Before a process runs for the first time, meaningful contaktrveed to be placed on its
kernel stack. A useful tool to set a process running for tis¢ fiime is thd RET instruction. It is
capable of changing the code and stack segments, staclepamstruction pointer, anBFLAGS
register all in one step. Please see page 15310l - sys. pdf for a diagram of what theRET
instruction expects on the stack.

Please note that in kernel mode, context switches may notteerdd until a later time.
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5.2 Scheduling

A simple round robin-scheduler is sufficient for the 410 letriThe running time of the scheduler
should not depend on the number of processes currently inaheus process queues in the
kernel. In particular, there are system calls that alterafter in which processes run. These
calls should not cause the scheduler to run in anything otiaer constant expected time (but see
Section 9.1.1, “Encapsulation” below).

You should avoid a fixed limit on the number of processes. higqadar, if we were to run
your kernel on a machine with more memory, it should be abtifgport more processes. Also,
your kernel should respond gracefully to running out of mgmdystem calls which would
require more memory to execute should receive error retodes In the other direction, it is
considered legitimate for a Unix kernel to kill a process &ime it is unable to grow its stack
(optional challenge: can you do better than that?).

6 System Calls

6.1 The System Call Interface

The system call interface is the part of the kernel most exghts user processes. User processes
will make requests of the kernel by issuing a software infgtrrusing thel NT instruction.
Therefore, you will need to install one or more IDT entriehiémdle system calls.

The system call boundary protocol (calling convention) i the same for P3 as it was for
P2. Interrupt numbers are defined irb/ i nc/ syscal | _int. h.

6.2 System Call Specifications
6.2.1 Overview

The 410 kernel supports the basic process creation andotapterations:fork(), exec(),
wai t (), andexit(). It also supports| eep() andyi el d() functions, terminal I/O functions,
and a primitive threading facility.

6.2.2 Validation

Your 410 kernel must verify all arguments passed to systdis, @nd should return an integer
error code less than zero if any arguments are invalid. Theekenay not kill a user process that
passes bad arguments to a system call, aalokdl utely may not crash.

The kernel must verify, using its virtual memory housekagpnformation, that every pointer
is valid before itis used. For example, argumentsxtec() are passed as a null terminated array
of C-style null terminated strings. Each byte of each strmgst be checked to make sure that it
lies in a valid region of memory.
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6.2.3 The System Calls

Implement the following system calls in your kernel. Thougls should go without saying,
kernels missing system calls are unlikely to meet with ggrapproval from the course staff.
Except form ncl one( ), the prototypes listed here denote the interface exposgskigrocesses.

e int fork() - Creates a new child process as a copy of the calling proGassuccess, the
process ID of the child process is returned to the parentzaralis returned to the child.
Note thatf or k() makes a deep copy of the parent’s address space and givéisatabild.

e int exec(char *execnane, char **argvec) - Replaces the -currently running
program in the calling process with the program stored irfithenamedexecnane. The
argumenar gvec points to a vector of arguments to pass to the new program agjiment
list. The new program receives these arguments as argureeitssnai n() function.
The argument vector should be passed toetkex() system call formatted as a C style
argument vector, but this should be validated. The argunestor should be passed to the
new program’smai n() function as a C style argument vector, as the second arguifieat
first argument to the new progranmai n() function should be the length of the argument
vector. Be sure to be familiar with how C style argument vectoe formatted. Reasonable
limits may be placed on the number of arguments that a usgraaromay pass texec(),
and the length of each argument. Be sure to do as much validat possible before
deallocating the old program’s resources. On success thero return from this call in
the calling program. If something goes wrong, an integesrazode less than zero should
be returned.

e void exit(int status) - Terminates execution of the calling process immediateiy,
saves the integat at us for possible later collection by the parent through a calldiat () .
In the case that the process’ resources are not being shadneources used by the calling
process are reclaimed, except for the saved exit statusn\&Ipeocess with children or a
member of a thread group callsi t () or is aborted, the children or other threads should
continue to run normally. Orphans may either be reparerdgetidi nit user process,
which contains a while loop arounghi t (), or may be told that they no longer have a
parent. Unix-like kernels use the former semantic, and sése the equivalent of the PCB
until wai t () is called on the exited process.

e int wait(int *status_ptr) - Collects the process ID and exit status returned by a child
process of the calling process. If the calling process hashildren, an integer error code
less than zero is returned. Otherwise, if there are no eghédren waiting to be collected,
the calling process blocks until a child exits. The proc&ssfithe child process is returned
on success, and its exit status is copied to the integererefed byst at us ptr.

e int yield(int pid) - Defers off execution of the calling process to a time deteet
by the scheduler, in favor of the process with procesgilD. If pi d is -1, the scheduler
may determine which process to run next. The only proceskesavscheduling should be
affected byyi el d() are the calling process, and the process thpt ¢ d( ) ed to. If the
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process with process IPi d is not runnable, or doesn’t exist, then an integer error code
less than zero is returned. Zero is returned on success.

int deschedul e(int *reject) - Atomically checks the integer pointed to bgj ect .

If the integer is non-zero, the call returns immediatelyhwéturn value zero. If the integer
pointed to byr ej ect is zero, then the calling process will not be scheduled toouthe
scheduler until a call taeke_r unnabl e() on the calling process. An integer error code
less than zero is returned if reject is not a valid pointer.

int nmake_runnabl e(int pid) - Makes theleschedul e() d process with process | d
runnable by the scheduler. On success, zero is returngdd lis not the process ID of a
process that calledeschedul e(), then an integer error code less than zero is returned.

int mnclone() - Except for return values, creates an exact copy of thenggfirocess.
The PID of the created process is returned to the callinggasicZero is returned to the
created process. If something goes wrong, an error codehasszero is returned to the
calling process, and no new process is created. The calloweps and the created process
share an address space. Subsequent calls by the callingapedprocesses to ther k()
orexec() system calls may be refused.

i nt getpid() - Returns the process ID of the calling process.

void *brk(void *addr) - Sets the break value of the calling process. The initiahkre
value of a process is the address immediately above the ddséss used for program
instructions and data. This call has the effect of allogatindeallocating enough memory
to cover only up to the specified address, rounded up to agantaultiple of the page size.
If addr is less than the break value when the program began execatidraddr is within

four pages of the stack, the break point is not changed. Therealue obr k() is always

the break value after the call has been performed, even breek value does not change.

int sleep(int ticks) - Deschedules the calling process until at leiastks timer
interrupts have occurred after the call. Returns immeljiatet i cks is zero. Returns
an integer error code less than zerbiitks is negative. Returns zero otherwise.

char getchar() - Returns a single character from the character input stréfahme input
stream is empty the process is descheduled until a chaiacherilable. If some other
process is descheduled orr @adl i ne() or getchar(), then the calling process must
block and wait its turn to access the input stream. Champt@cessed by thget char ()
system call should not be echoed to the console.

int readline(int len, char *buf) - Reads the nextline from the console and copies
it into the buffer pointed to byuf . If there is no line of input currently available, the cadjin
process is descheduled until one is. If some other proceestheduled onreeadl i ne()

or aget char (), then the calling process must block and wait its turn to s€tke input
stream. The length of the buffer is indicatedlmn. If the length of the line exceeds the
length of the buffer, only en-1 characters should be copied imtaf . r eadl i ne() should
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NULL terminatebuf . Characters not placed in the buffer should remain availfdvlother
calls toreadl i ne() andgetchar(). The available line should not be copied irtaf

until there is a newline character available. If the linensa#ler than the buffer, then the
complete line including the newline character is copied the buffer. Characters that will

be consumed byreadl i ne() should be echoed to the console immediately. If there is no
outstanding call to eadl i ne() no characters should be echoed. Echoed user input may
be interleaved with output due to callspgoi nt (). The readline system call returns the
size of the line not including the NULL terminating charaat@ success. An integer error
code less than zero is returnediff is not a valid memory address hifif falls in the text
section of the process, orlien is unreasonably large.

N.B.L: The calling process shoutwt be scheduled every time a character is processed by
the keyboard interrupt handler.

e int print(int len, char *buf) - Prints the string pointed to biyuf to the console.
Only| en characters of this string should be printed. The callingess should block until
all characters have been printed to the console. Outputm€tomcurrenpri nt () s should
not be intermixed. If en is larger than some reasonable maximum dwif is not a valid
memory address, an integer error code less than zero sheudlyned.

e int set_termcolor(int color) - Sets the terminal print color for any future output to
the console. Itol or does not specify a valid color, an integer error code less #eso
should be returned. Zero is returned on success.

e int set _cursor_pos(int row, int col) - Setsthe cursor to the locatipnow, col).
If the location is not valid, an integer error code less thamos returned. Zero is returned
on success.

e int get _cursor_pos(int *row, int *col) - Writes the current location of the cursor
to the addresses provided as arguments. If the argumentetwvalid addresses, then an
error code less than zero is returned. Zero is returned aresac

e int |Is(int size, char *buf) - Fills in the user-specified buffer with the names of
executable files stored in the system’s RAM disk “file systeththere is enough room
in the buffer for all of the (null-terminated) file namaad an additional null byte after
the last filename’s terminating null, the system call wiliure the number of filenames
successfully copied. Otherwise, an error code less thamigeeturned and the contents
of the buffer are undefined. For the curious among you, thesesy call is (very) loosely
modeled on the System et dent s() call.

e void halt() - Ends the simulation by calling the support functimihal t () .

7 Building and Loading User Programs

IN.B. stands for “Nota Bene,” Latin for “note well,” or “paytantion.”
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7.1 Building User Programs

User programs to be run on the 410 kernel should conform téotleving requirements. They
should be ELF formatted binaries such that the only sectibasmust be loaded by the kernel
are the .text, .rodata, .data, and .bss sections (C++ prsgrahich have additional sections
for constructors which run before main() and destructorgkwviun after main(), are unlikely to
work).

Programs may be linked against the 410-provided user-djmaey, andmust not be linked
against the standard C library provided on the host systdrmay $hould be linked statically, with
the .text section beginning at the lowest address in theadsiness space. The entry point for all
user programs should be thaai n() function found inuser/ user _tests/crt0. c.

7.2 Loading User Programs

The 410 kernel must read program data from a file, and load dkee idto a process’ address
space. Due to the absence of a file system, user programsenitidaled from large arrays
compiled directly into the kernel. A utilitgxec2obj , has been provided; it takes as an argument
a list of files, and it creates a .c file containing one charyarmmamed after the file, consisting of
the files’ data. The file is callegser _apps. c. It also contains a table of contents the format of
which is described imnc/ exec2obj . h.

Later in the semester, there may be an opportunity to writke ayistem for the 410 kernel.
To facilitate an easy switch froexec2obj to a file system, please use tit byt es() skeleton
found inl oader . c: it provides a crude abstraction which can be implementetbprof either
user _apps. c or a real file system.

Support code has also been providetidgader . ¢ to extract the important information from
an ELF-formatted binaryel f _check_header () will verify that a specified file is an ELF binary,
andel f _| oad_hel per () will fill in the fields of astruct se (“simplified ELF”) for you. Once
you have been told the desired memory layout for an exeautdbl you are responsible for
usingget byt es() to transfer each executable file section to an appropriateglgnized memory
region. You should zero out areas, if any, between the end@fegion and the start of the next.
The bss region should begin immediately after the end ofdhd/write data region, and the heap
should begin on a page boundary.

Note: the .text and .rodata (read-only data) sections okeeutable must be loaded into
memory which the process cannot modify.

8 The Programming Environment

8.1 Kernel Programming

The support libraries for the kernel include a simple C lifpra list based dynamic memory
allocator, functions for initializing the processor dataistures with default values, and functions
for manipulating processor data structures.
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8.1.1 A Simple C Library

This is simply a list of the most common library functionstthee provided. For details on using
these functions please see the appropriatepages. Other functions are provided that are not
listed here. Please see the appropriate header files fdrletinlg of the provided functions.

Some functions typically found in a C I/O library are prowdey | i b/l i bstdi 0.a. The
header file for these functionslisb/ i nc/ st di o. h.

e int putchar(int c)

e int puts(const char *str)

e int printf(const char *format, ...)

e int sprintf(char *dest, const char *format, ...)

e int snprintf(char *dest, int size, const char *formant, ...)
e int sscanf(const char *str, const char *format, ...)

e void Iprintf kern( const char *format, ...)

Some functions typically found in a C standard library arevpded byl i b/ 1i bstdlib. a.
The header files for these functions, linb/ i nc, arestdlib. h, assert. h, mall oc. h, and
ctype. h.

e int atoi(const char *str)

e |ong atol (const char *str)

long strtol (const char *in, const char **out, int base)

e unsigned long strtoul (const char *in, const char **out, int base)
e void *mal | oc(sizet size)

e void *calloc(sizet nelt, sizet eltsize)

e void *realloc(void *buf, sizet newsize)

e void free(void *buf)

e void smemalign(sizet alignment, sizet size)

e void sfree(void *buf, size_t size)

e voi d panic(const char *format, ...)

e void assert(int expression)
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The functionssmemal i gn() andsfree() manage aligned blocks of memory. That is, if
al i gnnent is 8, the block of memory will be aligned on an 8-byte boundarplock of memory
allocated with smemaligmust be freed withsfree(), which requires thesi ze parameter.
Therefore, you must keep track of the size of the block of mgrgou allocated. This interface
is useful for allocating things like page tables, which mustaligned on a page boundary. By
volunteering to remember the size, you free the storageatitho from scattering block headers
or footers throughout memory, which would preclude it froto@ating consecutive pages.
sfree(void* p, int size) frees a block of memory. This bloakust have been allocated
by smemal i gn() and it must be of the specified size. Note that these memargaibn facilities
operateonly on memory inside the kernel virtual address range. Of cotusetions with similar
names appear in user-space libraries; those functieres operate on kernel virtual memory.

Some functions typically found in a C string library are po®d byl i b/ i bstring. a. The
header file for these functionslisb/ i nc/ string. h.

e int strlen(const char *s)

e char *strcpy(char *dest, char *src)

e char *strncpy(char *dest, char *src, int n)

e char *strdup(const char *s)

e char *strcat(char *dest, const char *src)

e char *strncat(char *dest, const char *src, int n)

e int strcnp(const char *a, const char *b)

e int strncnp(const char *a, const char *b, int n)

e void *menmmove(void *to, const void *from unsigned int n)
e void *menset (void *to, int ch, unsigned int n)

e void *menctpy(void *to, const void *from unsigned int n)

8.1.2 Processor Utility Functions

These functions access and modify processor registersaadguluctures. Descriptions of these
functions can be found elsewhere in this document.

e voi d disable.interrupts()
e void enabl edinterrupts()
e void set _cr3(void *)

e voi d set _cr3_nodebug(void *)
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e voi d set _espO(void *)
e void *get _esp0()

e void *sidt()

8.1.3 Makefile

The providedvakef i | e takes care of many of the details of compiling and linkingkkenel. It
is important, however, to understand how it works. To build kernel, list all object files that
need to be created unda@JSin ker nel . nk. To build under AFS, build witeke af s. To build
on a computer with an internet connection, but not connectédS, build withnake web. To
build on a standalone computer, build witkke of f | i ne.

8.2 User Programming

The same C library is provided for user programs. Howeversole output functions will not
work until thepri nt () system call is implemented. Also, a pseudo-random numbergéor is
provided as a user library.

9 Hints on Implementing a Kernel

9.1 Code Organization

e You may wish to invest in the creation of a trace facility.teesd of Iprintf() calls scattered
at random through your code, you may wish to set up an infretetre which allows you to
enable and disable tracing of a whole component at once {leegscheduler) and/or allow
you to adjust a setting to increase or decrease the gratyuddmessage logging.

e Some eventualities are genuinely fatal in the sense thia thao way to continue operation
of the kernel. If, for example, you happened to notice tha& process had overflowed its
kernel stack onto the kernel stack of another process, ther@ way to recover a correct
execution state for that process, nor to free up its ressutcesuch a situation the kernel
is broken, and your job is no longer to arrange thingsHi&eur n(- 1) , but instead to stop
execution as fast as possible before wiping out data whialddme used to find and fix the
bug in question. You will need to use your judgement to cfassiuations in to recoverable
ones, which you should detect and recover from, and unreableesituations (such as data

structure consistency failures), for which you shaudtiwrite half-hearted sort-of-cleanup
code.

You may find the C preprocessor symbalsl LE__ and __LI NE__ (and maybe even the
newfangled_FUNCTI ON__) useful to you in this regard. Note that those symbols beqgh a
end withtwo underline characters.
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e Avoid common coding mistakes. Be aware that will not warn about possible unwanted
assignments inf , andwhi | e statements. Also, note the difference betwetoo- >bar ,
and! (f oo->bar) . Practicing Pair Programming can help avoid these kindsistakes.

9.1.1 Encapsulation

Instead of typing linked-list traversal code 100 times tlyloout your kernel, thus firmly and
eternally committing yourselves to a linear-time datadtite, you should attempt to encapsulate.
Don’t think of a linked list of processes; think of sets or gps of processes: live, runnable, etc.

Likewise, don’'t write a 2,000-line page fault handler. bwd of ignoring the semantic
properties shared by pages within a region, use those irepr your advantage. Write smaller
page-fault handlers which encapsulate the knowledge saget handlsome page faults. You
will probably find that your code is smaller, cleaner, andexa® debug.

If you find yourself needing something sort of like a conditi@riable don’t throw away the
modes of thought you learned in Project 2. Instead, use wiatgarned as an inspiration to
design and implement an appropriate similar abstractisidl@your kernel.

Encapsulation can allow you to defer tricky code. Insteadngflementing the “best” data
structure for a given situation, you may temporarily hidewadr-quality data structure behind an
interface designed to accomodate the better data strucuree your kernel is stable, you can
go back and “upgrade” your data structures. While we willgratet a chock-full-of-linked-lists
kernel or a wall-of-small-arrays kernel with cries of jopdedata structure design is an important
part of this exercise, achieving a complete, solid impletagon is critical.

9.1.2 Method tables

You can practice modularity and interface-based design in a lagguwathout objects. In C this
is typically done via structures containing function-geinfields. Here is a brief pseudo-code
summary of one basic approach (other approaches are valjd to

struct device_ops {

void (*putchar)(void *, char);
int (*getchar)(void *);

b

struct device_ops serial _ops = {
serial _putchar, serial_getchar

} ]

struct device_ops pipe_ops = {
pi pe_put char, pipe_getchar

b

struct device_object {
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struct device_ops *opsp;
void *instance _data;

b

voi d putchar(struct device_object *dp, char c)
{ (dp- >opsp- >put char) (dp- >i nstance_data, c);
}

void init(void)

{

struct device_object *dl, *d2;

dl = new pi pe_object();

d2 = new serial _object();

putchar(dl, '1'); /* pipe_putchar(dl->i nstance_data, '1'); */
putchar(d2, '2"); /* serial _putchar(d2->instance data, '2'); */

9.1.3 Embedded Traversal Fields

Imagine a component is designed around a linked list. It ne@yrsnatural to re-invent the Lip
“cons cell™

struct listitem/{
struct listitem*next;
void *itemitself;

}

The problem with this approach is that you are likely to aalll oc() twice as often as you
should—once for each item, and once for the list-item stméct Sincemal | oc() can be fairly
slow, this is not the best idea, even if you are comfortabkdidg with odd outcomes (what if
you can allocate the list item but not the data item, or theothay around?).

Often a better idea is to embed the traversal structureertbiel data item:

struct itemitself {
struct itemitself *next;
int fieldl;
char field2;

}

2or, for you young whippersnappers, ML
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This cuts youmal | oc() load in half. Also, once you understand C well enough, it isgplole
to build on this approach so you can write code (or macros¢hvwmll traverse a list of processes
or a list of devices.

Isn’t this an encapsulation violation? It depends...ifé'gbody knows” that your component
does traversal one way, that is bad. If only your componenf®rted methods know the traversal
rules, this can be a very useful approach.

9.2 Process Initialization

e Process IDs- Each process must have a unique integer process ID. Sinceteger
allows for over two billion processes to be created befoerftowing its range, sequential
numbers may simply be assigned to each process createdutvitiworying about the
possibility of wrap-around — though real operating systelosworry about this. The
process ID must be a small, unique integer, not a pointer. ddta structure used to
map a process ID to its process control block should not bificirent in space or time.
This probably means that a hash table indexed by processdlldbe used to store the
mapping from process IDs to PCBs.

e fork() -Onafork(), anew process ID is assigned, the user context from themgnni
parent is copied to the child, and a deep copy is made of thenpaiaddress space. Sine
the CPU can only access memory by virtual addresses via pasgeaties, both the source
and destination of a copy must be mapped at the same time.a8dtless spaces need not
be mapped at the same time, however. The copy may be donerpaadesince the address
spaces are already naturally divided into pages.

e exec() - On anexec(), the stack area for the new program must be initialized. The
stack for a new program begins with only one page of memoogated. To complete the
initialization of the stack for a new program, the argumeésttrhust be copied above the
stack.

9.3 Kernel Initialization

Please consider going through these steps ilk¢heel _mai n() function.

¢ Initialize the IDT entries for each interrupt that must badiad.
e Clear the console. The initialization routines will leaveass.
e Build a structure to keep track of which physical frames areaurrently allocated.

¢ Build the initial page directory and page tables. Direct rttapkernel’s virtual memory
space.

e Create and load the idle process. For grading purposes, yyuassume that the “file
system” will contain an executable calledl e which you may run when no other process

27



is runnable. Or you may choose to hand-craft an idle proceg®m reference to an
executable file.

e Create and load theni t process. For grading purposes, assume that the “file systdm”
contain an executable calledi t which will run the shell (or whatever grading harness
we decide to run). During your developmentj t should probably ork() a child that
exec() s the program iniser/ 410_test s/ shel | . c. It is traditional fori ni t to loop on
wai t () in order to garbage-collect orphaned zombie processesalso traditional for it
to react sensibly if the shell exits or is killed.

e Set the first process running.

N.E. Suggesting thater nel _mai n implements these functions dasst imply that it must do
So via straight-line code with no helper functions.

9.4 Requests for Help

Please do not ask for help from the course staff with a meddagthis:

I’'m getting the default trap handler telling me | have a gah@rotection fault.
What's wrong?

or

| installed my illegal instruction handler and now it’s tey me I've executed an
illegal instruction. What's wrong?

An important part of this class is developing your debuggkigls. In other words, when you
complete this class you should be able to debug problemswyilsig previously wouuld not have
been able to handle.

Thus, when faced with a problem, you need to invest some tinfeguring out a way to
characterize it and close in on it so you can observe it in th@shact of destruction. Your reflex
when running into a strange new problem should be to starkiting, not to start off by asking
for help.

Having said that, if a reasonable amount of time has beert syerg to solve a problem and
no progress has been made, do not hesitate to ask a questibpleBse be prepared with a list
of details and an explanation of what you have tried and ralgdo far.

10 Debugging

10.1 Kernel Debugging

There are a number of ways to go about finding bugs in kerned.cdtie most direct way for
this project is to use the Simics symbolic debugger. Infdiomaabout how to use the Simics
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debugger can be found in the documentation on the courseiteebad by issuing théel p
command at the simics prompt.

Also available is th&"'AG C_BREAK macro defined in lib/inc/kerndebug.h. Placing this macro
in code will cause the simulation to stop temporarily so thatdebugger may be used.

The function calll printf kern() may also be used to output debugging messages to the
simics console, and to the file kernel.log. The prototypd for ntf _kern() can be found in
l'i b/inc/stdio.h.

Also, please note that the kernel memory allocator is vanjlar to the allocator written by
15-213 students. If the allocator reports an “internal”sistency failure, this is overwhelmingly
likely to mean that the user of some memory overflowed it amdupted the allocator’'s meta-
data. In other words, even though the errargorted by | mmf r ee, it is almost certainly not an
errorin| nmfree.

10.2 User Process Debugging

Debugging user processes can be useful in the course of dinBigs in kernel
code. TheMAd CBREAK macro is also available to user processes#bycl udeing the
user/inc/ magi c_break. h header file.

The function call printf () may be used to output debugging messages from user programs.
Its prototype is iruser/1ib/inc/stdio.h.

Symbolic debugging of user programs involves some set-upnicS can keep track of
many different virtual memory spaces and symbol tables bga@aating the address of the page
directory with the file name of the program.

Simics must switch to the appropriate symbol table for theesu address space as soon as a
new value is placed ificr 3. For this to work, you must do three things.

1. When a new program is loaded, register its symbol tablé Bimics with a call to
Sl Mr egi st er _user _proc(), defined inl i b/ i nc/ ker ndebug. h.

2. When a program exits, please make a call td.unr egi st er _user _proc() defined in the
same file.

3. Every time you switch user address spacessdab cr3(), the Simics magic-break
instruction will be used to tell the Simics debugger to stwigymbol tables. If you
believe you must change the valueé®f 3 in assembly language, simply copy the relevant
instructions from theet _cr 3() we provide.

If you do not wish to enable debugging of user processes,|gidgnot register processes
with Simics, and use the macset _cr 3_nodebug() instead oket _cr3().

11 Checkpoints

The kernel project is a large project spanning several weékger the course of the project
the course staff would like to review the progress being magw that reason, there are three
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checkpoints that will be strictly enforced. The checkpgiexist so that important feedback can
be provided, and so should be taken very seriously.

11.1 Checkpoint One

After the first week of the project, pseudocode functionsusthbe written for each system call,
and for the page fault handler. Also, the pseudocode fumstghould be commented so that
doxygen will produce HTML documentation. A draft version thie Process Control Block
structure should be written and documented in the same widng gsseudocode functions. Source
and header files containing the system call pseudocode andrdmtation, and a header file
containing the PCB and documentation are to be handed in.

11.2 Checkpoint Two

After the second week of the project, it should be possibleéa and run the idle program
provided inuser/ 410 tests/idle.c. Also, virtual memory should be enabled, and the
keyboard, console and timer drivers should be integratiedire kernel.

11.3 Checkpoint Three

After the third week of the project, it should be possibledtl theget _pi d() andbrk() system
calls from user processes. Also, it should be possible thama run two user processes such that
the timer interrupt handler invokes the scheduler to cdraextch between the two processes at
regular intervals. A working page fault handler should bétem. This probably means that the
majority of functions for manipulating virtual memory shdie implemented.

12 Plan of Attack

A recommended plan of attack has been established. HopehiB will give some ideas about
how to start.

1. Read this handout and gain an understanding of the assignnfrirst, understand the
hardware, and then the operations that need to be implethei@pend time becoming
familiar with all of the ways the kernel could be invoked. Whappens on a transition
from user mode to kernel mode? What happens on a transitvom Kernel mode to user
mode?

2. Write pseudocode for the system calls as well as the ugehandlers, paging system, and
context switcher. Start by writing down how all of these gigfit together. Next, increase
the level of detail and think about how the pieces break dowm functions. Then, write
detailed pseudocode.
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10.

11.
12.
13.

14.
15.

16.
17.
18.

Based on the above step, construct the Process Contrck(BIGB). What should go in a
PCB? At this point, checkpoint one has been completed.

Write the timer interrupt handler. For now, simply vertfyat the IDT entry is installed
correctly, and that the interrupt handler is running.

Write functions for the manipulation of virtual addregmees. Direct map the kernel’s
virtual memory space. Keep track of free physical framesgufé out to allocate and
deallocate frames outside the kernel virtual space so thaybe assigned to processes
(optional challenge: can you do this in a way which doesnftstome more kernel virtual
space for management overhead as the size of physical memuvg larger?).

. Write a page fault handler that frames pages on legal sesesnd prints debugging

information on bad accesses.

Now that there is an initial page directory, it is posstolenable paging. Do so, then write
the loader. Create a PCB for the idle process. Load and rurdih@rocess. Verify that
timer interrupts are still occurring, and that the timeemtipt handler is sill being run.

. Write functions for scheduling and context switching.allaa second process. Have the

timer interrupt handler context switch between the first secbnd processes.

Integrate the interrupt handler for the keyboard, andctivesole driver into the kernel.
Install an entry for it in the IDT. Keep in mind that the keybdanterrupt handler may
need to change later to support tie¢ char () andreadl i ne() system calls. At this point
checkpoint two has been completed.

Implement theyet pi d() system call. Once this is working, the system call interfisce
functioning correctly.

Implement thér k() system call, and test it with the user proceskl oc() .
Implement théal t () system call.

Fill out the page fault handler. Stack and Heap growthishoow be supported. Processes
should be killed on bad memory accesses.

Implement or k() . Keep in mind the hints listed above.

Implemenexec() . Testf ork() andexec() by having an init process spawn a third user
process.

Implementwai t (), andexi t () . Please take care theti t () is not grossly inefficient.
Implement theeadl i ne() system call.

Implementtherint(),set _termcol or(),andset cursor _pos() system calls. Atthis
point, the shell should run.
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19.
20.
21.
22.
23.
24,

Implementri ncl one(), and test it using the thread library.

Implement thgi el d(), deschedul e()

Implement thal eep() system call. Recall that the scheduler must run in consitaiet t

Implement th@et char () system call.

Write many test cases for each system call. Try to breakemel.

You're done! Celebrate!

, andmake_r unnabl e() system calls.
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