
15-410, S'05- 1 -

Scheduling
Mar. 16, 2005

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L22a_Scheduling

15-410
“...Everything old is new again...”

15-410, S'05- 2 -

Synchronization

Checkpoint 2Checkpoint 2

� Friday, March 18, in cluster

Checkpoint 3Checkpoint 3

� Upcoming, “end of third week”

� No meeting – regular lecture

� Expect: code drop, milestone-estimation form

� Spending the time to really plan is worthwhile

15-410, S'05- 3 -

Outline

Chapter 6: SchedulingChapter 6: Scheduling

15-410, S'05- 4 -

CPU-I/O Cycle

ProcessProcess view: 2 states view: 2 states

� Running

� Waiting for I/O

� Life Cycle

� I/O (loading executable), CPU, I/O, CPU, .., CPU (exit())

SystemSystem view view

� Running, Waiting

� Runnable – not enough processors for you right now

Running Running ⇒⇒ waiting is mostly voluntary waiting is mostly voluntary

� How long do processes choose to run before waiting?

15-410, S'05- 5 -

CPU Burst Lengths

OverallOverall

� Exponential fall-off in CPU burst length

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

15-410, S'05- 6 -

CPU Burst Lengths

“CPU-bound” program“CPU-bound” program

� Batch job

� Long CPU bursts

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

15-410, S'05- 7 -

CPU Burst Lengths

“I/O-bound” program“ I/O-bound” program

� Copy, Data acquisition, ...

� Tiny CPU bursts between system calls

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

15-410, S'05- 8 -

Preemptive?

Four opportunities to scheduleFour opportunities to schedule

� A running process waits (I/O, child, ...)

� A running process exits

� A waiting process becomes runnable (I/O done)

� Other interrupt (clock, page fault)

Multitasking typesMultitasking types

� Fully Preemptive: All four cause scheduling

� “Cooperative” : only first two

15-410, S'05- 9 -

Preemptive kernel?

Preemptive multitaskingPreemptive multitasking

� All four cases cause context switch

Preemptive Preemptive kernelkernel

� All four cases cause context switch in kernel mode

� This is a goal of Project 3

� System calls: interrupt disabling only when really necessary

� Clock interrupts should suspend system call execution
» So fork() should appear atomic, but not execute that way

15-410, S'05- 10 -

CPU Scheduler

Invoked when CPU becomes idleInvoked when CPU becomes idle

� Current task blocks

� Clock interrupt

Select next taskSelect next task

� Quickly

� PCB's in: FIFO, priority queue, tree, ...

Switch (using “dispatcher”)Switch (using “dispatcher”)

� Your term may vary

15-410, S'05- 11 -

Dispatcher

Set down running taskSet down running task

� Save register state

� Update CPU usage information

� Store PCB in “ run queue”

Pick up designated taskPick up designated task

� Activate new task's memory

� Protection, mapping

� Restore register state

� Transfer to user mode

15-410, S'05- 12 -

Scheduling Criteria

System administrator viewSystem administrator view

� Maximize/trade off

� CPU utilization (“busy-ness”)

� Throughput (“ jobs per second”)

Process viewProcess view

� Minimize

� Turnaround time (everything)

� Waiting time (runnable but not running)

User view (interactive processes)User view (interactive processes)

� Minimize response time (input/output latency)

15-410, S'05- 13 -

Algorithms

Don't try these at homeDon't try these at home

� FCFS

� SJF

� Priority

ReasonableReasonable

� Round-Robin

� Multi-level (plus feedback)

Multiprocessor, real-timeMultiprocessor, real-time

15-410, S'05- 14 -

FCFS- First Come, First Served

Basic ideaBasic idea

� Run task until it relinquishes CPU

� When runnable, place at end of FIFO queue

Waiting time Waiting time veryvery dependent on mix dependent on mix

“Convoy effect”“Convoy effect”

� N tasks each make 1 I/O request, stall

� 1 task executes very long CPU burst

� Lather, rinse, repeat

� N “ I/O-bound tasks” can't keep I/O device busy!

15-410, S'05- 15 -

SJF- Shortest Job First

Basic ideaBasic idea

� Choose task with shortest next CPU burst

� Will give up CPU soonest, be “nicest” to other tasks

� Provably “optimal”

� Minimizes average waiting time across tasks

� Practically impossible (oh, well)

� Could predict next burst length...
» Text presents exponential average
» Does not present evaluation (Why not? Hmm...)

15-410, S'05- 16 -

Priority

Basic ideaBasic idea

� Choose “most important” waiting task

� (Nomenclature: does “high priority” mean p=0 or p=255?)

Priority assignmentPriority assignment

� Static: fixed property (engineered?)

� Dynamic: function of task behavior

Big problem: Big problem: StarvationStarvation

� “Most important” task gets to run often

� “Least important “ task may never run

� Possible hack: priority “aging”

15-410, S'05- 17 -

Round-Robin

Basic ideaBasic idea

� Run each task for a fixed “ time quantum”

� When quantum expires, append to FIFO queue

“Fair”“Fair”

� But not “provably optimal”

Choosing quantum lengthChoosing quantum length

� Infinite (until process does I/O) = FCFS

� Infinitesimal (1 instruction) = “Processor sharing”

� Balance “ fairness” vs. context-switch costs

15-410, S'05- 18 -

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors

Memory latencyMemory latency

� Long, fixed constant

� Every instruction has a
memory operand

Solution: round robinSolution: round robin

� Quantum = 1 instruction

Memory

Processor Core

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

15-410, S'05- 19 -

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors

Memory latencyMemory latency

� Long, fixed constant

� Every instruction has a
memory operand

Solution: round robinSolution: round robin

� Quantum = 1 instruction

� One “process” running

� N-1 “processes” waiting

Memory

Processor Core

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

15-410, S'05- 20 -

True “Processor Sharing”

Each instructionEach instruction

� “Brief” computation

� One load xor one store

� Sleeps process N cycles

Steady stateSteady state

� Run when ready

� Ready when it's your turn

Memory

Processor Core

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

15-410, S'05- 21 -

Everything Old Is New Again

Intel “hyperthreading”Intel “hyperthreading”

� N register sets

� M functional units

� Switch on long-running
operations

� Sharing less regular

� Sharing illusion more
lumpy

� Good for some application
mixes

Memory

Processor Core

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

R
eg

is
te

r S
et

15-410, S'05- 22 -

Multi-level Queue

N independent process queuesN independent process queues

� One per priority

� Algorithm per-queue

Priority 0 P1 P7

Priority 1 P2 P9 P3

Batch P0 P4

R. Robin

R. Robin

FCFS

15-410, S'05- 23 -

Multi-level Queue

Inter-queue schedulingInter-queue scheduling

� Strict priority

� Pri 0 runs before Pri 1, Pri 1 runs before batch – every time

� Time slicing (e.g., weighted round-robin)

� Pri 0 gets 2 slices

� Pri 1 gets 1 slice

� Batch gets 1 slice

15-410, S'05- 24 -

Multi-level Feedback Queue

N queues, different quantaN queues, different quanta

Block/sleep before quantum expires?Block/sleep before quantum expires?

� Added to end of your queue

Exhaust your quantum?Exhaust your quantum?

� Demoted to slower queue

� Lower priority, typically longer quantum

Can you be promoted back up?Can you be promoted back up?

� Maybe I/O promotes you

� Maybe you “age” upward

Popular “ time-sharing” schedulerPopular “ time-sharing” scheduler

15-410, S'05- 25 -

Multiprocessor Scheduling

Common assumptionsCommon assumptions

� Homogeneous processors (same speed)

� Uniform memory access (UMA)

Load sharing / Load balancingLoad sharing / Load balancing

� Single global ready queue – no false idleness

Processor AffinityProcessor Affinity

� Some processor may be more desirable or necessary
» Special I/O device
» Fast thread switch

15-410, S'05- 26 -

Multiprocessor Scheduling -
“SMP”
Asymmetric multiprocessingAsymmetric multiprocessing

� One processor is “special”

� Executes all kernel-mode instructions

� Schedules other processors

� “Special” aka “bottleneck”

Symmetric multiprocessing - “SMP”Symmetric multiprocessing - “SMP”

� “Gold standard”

� Tricky

15-410, S'05- 27 -

Real-time Scheduling

HardHard real-time real-time

� System must always meet performance goals

� Or it's broken (think: avionics)

� Designers must describe task requirements

� Worst-case execution time of instruction sequences

� “Prove” system response time

� Argument or automatic verifier

� Cannot use indeterminate-time technologies

� Disks!

15-410, S'05- 28 -

Real-time Scheduling

Soft real-timeSoft real-time

� “Occasional” deadline failures tolerable

� CNN video clip on PC

� DVD playback on PC

� Much cheaper than hard real-time

� Real-time extension to timesharing OS
» POSIX real-time extensions for Unix

� Can estimate (vs. prove) task needs

� Priority scheduler

� Preemptible OS

15-410, S'05- 29 -

Scheduler Evaluation
Approaches
“Deterministic modeling”“Deterministic modeling”

� aka “hand execution”

Queueing theoryQueueing theory

� Math gets big fast

� Math sensitive to assumptions
» May be unrealistic (aka “wrong”)

SimulationSimulation

� Workload model or trace-driven

� GIGO hazard (either way)

15-410, S'05- 30 -

Summary

Round-robin is ok for simple casesRound-robin is ok for simple cases

� Certainly 80% of the conceptual weight

� Certainly good enough for P3

	 Speaking of P3...
» Understand preemption, don't evade it

“Real” systems“Real” systems

� Some multi-level feedback

� Probably some soft real-time

