15-410

“...What could possibly go wrong...”

Grab Bag
Mar. 25, 2005

Dave Eckhardt
Bruce Maggs

-1- L25_Misc 15-410, S'05

Synchronization

Checkpoint 3
= Tonight, see bboard post
= Spending the time to really plan is worthwhile

Final Exam schedule posted
= We need fimely notice of conflicts

Upcoming
= P3, P4 (but you knew that)

= Book report, another homework

= Hint: book report was assigned well before last week of
class...

0. 15-410, S'05

Outline

When to use if () vs. while ()

Thinking about errors
= Hmm...
= That's not right...
= Uh-oh...

15-410, S'05

What Could Possibly Go Wrong?

volid
join0 (1nt *tidp, void **statusp)
{
mutex lock (&zl) ;
1if (! (tp = findzombie())
cond_walit (&zc, &zm);
tp = findzombie () ;
mutex unlock (&zm) ;
*tidp = ...; *statusp =
zap (tp) ;

._4_} 15-410, S'05

What Could Possibly Go Wrong?

C usage note
= Which is better?
mutex_lock (& (objp—->m)) ;
mutex_lock (&objp—>m) ;

= What is the type of (&objp) —>m ?

15-410, S'05

What We Hope For

join0()

exit()

mutex lock (&zl) ;

if (!'(...))

cond wait (&zc, &zl);

mutex lock (&zl) ;

append (self,

-)

cond_signal (&zc)

7

mutex unlock (&zl) ;

tp = findzombie();

mutex unlock (&zl) ;

...status...zap...

_6-

15-410, S'05

What Went Wrong?

Nothing!

15-410, S'05

What Went Wrong?

Nothing!

But what if there is another thread?

15-410, S'05

Not Exactly What We Hope For

join0()

exit()

join0()

lock (&zl);

if (' (...))

wait (&zc, &zl);

lock (&zl);

append(...)

signal (&zc);

unlock (&zl) ;

lock (&zl);

tp = fndzmb();

unlock (&zl) ;

tp = fndzmb () ;

.. .deref NULL...

15-410, S'05

Have We Seen This Before?

Dining Philosophers deadlock example

Deadlock or not depended on scheduler
Dining Philosophers really does exemplify lots of stuff

What went wrong?

- 10 -

Protected world state wasn't ready for us

We went to sleep

Somebody prepared the world for us to run

We ran

We assumed nobody else had run

We assumed the world state was still ready for us

15-410, S'05

To “if()” Or Not To “if()”?

volid
join0 (1nt *tidp, void **statusp)
{

mutex lock (&zl) ;

while (! (tp = findzombie())

cond_wait (&zc, &zm);

mutex unlock (&zm) ;

*tidp = ...; *statusp =

zap (tp) ;

“11 -

15-410, S'05

Error Handling

Three kinds of error
= Hmm...
= That's not right...
= Uh-oh...

Important to classify & react appropriately

_12-

15-410, S'05

“New Player” - Take 1

// Improve memory locality:
// store players in array
struct player players[MAX];

struct player *new_player (int team, 1nt num)

{

int 1;
1f ((1 = emptyslot()) == —-1)
/* OH NO!!! */

MAGIC_BREAK;

-13 - 15-410, S'05

“New Player” - Take 2

// Improve memory locality:
// store players in array
struct player players[MAX];

struct player *new_player (int team, 1nt num)

{

int 1;

1f ((1 = emptyslot()) == —-1)
/* OH NO!!! */
while (1) ;

_14 - 15-410, S'05

What's Going On?

“Out of table slots” - what kind of thing?
= Should really never happen?
= Might happen sometimes?

= Likely to happen once a day?
= Remember: users always want 110%!

What to do?

= Resolve reasonable issues when possible

_15-

15-410, S'05

“New Player” - Take 3

struct player *players;
int playerslots;
struct player *new_player (int team, 1nt num)

{

int 1;
1f ((1 = emptyslot()) == —-1)
1f ((1 = grow_table_and_alloc()) == —-1)
/* OH NO!!! */
while (1) ;

- 16 - 15-410, S'05

What's Going On?

“Out of heap space” - what kind of thing?
= Should really never happen?
= Might happen sometimes?
= Likely to happen once a day?

_17 -

15-410, S'05

What's Going On?

“Out of heap space” - what kind of thing?
= Should really never happen?
= Might happen sometimes?
= Likely to happen once a day?

My suggestion
= “Might happen sometimes™

What to do?

= Hard to say what the right thing is for all clients
= Is it fatal or not?

= Often: pass the buck

- 18 - 15-410, S'05

“New Player” - Take 4

struct player *players;
int playerslots;
struct player *new_player (int team, 1nt num)
{

int 1;

1f ((1 = emptyslot()) == —-1)

1f ((1 = grow_table_and_alloc()) == —-1)
return (NULL);

- 19 - 15-410, S'05

“Free Player” - Take 1

volid free_player (struct player *p)
{
switch (player—->role) {
case CONTENDER:
free (p—>cstate); break;
case REFEREE:
free (p—>refstate); break;
}
free (p—>generic);

mark_slot_avallable(p - players);

-20 - 15-410, S'05

What's Wrong?

There is a sanity-check missing...
= Probably somebody will make a mistake eventually
= Let's catch it

291 - 15-410, S'05

“Free Player” - Take 2

volid free_player (struct player *p)
{
switch (player—->role) {
case CONTENDER:
free (p—>cstate); break;
case REFEREE:
free (p—>refstate); break;
default: return;
}
free (p—>generic);
mark_slot_avallable(p - players);

}

_09 15-410, S'05

All Fixed?

No!

= The program has a bug
= Maybe the client is passing us random player pointers
= Maybe we are handing out invalid p->role values

= We happened to catch the bug this time

= We might not catch it every time!
= A random player pointer might have a “valid” p->role

The program is broken
= Hiding the problem isn't our job
= Hiding the problem isn't even defensible

_23 .

15-410, S'05

Should We “Crash”?

If the program is “broken”, should we “crash”?

= Often: yes
= Dumping core allows debugger inspection of the problem
= Throwing running program into a debugger is probably nicer

_24 - 15-410, S'05

Summary

if vs. while

= If somebody can revoke your happiness, you'd better
check

Three kinds of error

= Hmm...
= Try to resolve

= That's not right...
= Try to report

= Uh-oh...
= Try to help the developer find the problem faster

-25 - 15-410, S'05

