
15-410, S'05- 1 -

Grab Bag
Mar. 25, 2005

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L25_Misc

15-410
“...What could possibly go wrong...”

15-410, S'05- 2 -

Synchronization

Checkpoint 3Checkpoint 3

� Tonight, see bboard post

� Spending the time to really plan is worthwhile

Final Exam schedule postedFinal Exam schedule posted

� We need timely notice of conflicts

UpcomingUpcoming

� P3, P4 (but you knew that)

� Book report, another homework

� Hint: book report was assigned well before last week of
class...

15-410, S'05- 3 -

Outline

When to use if () vs. while ()When to use if () vs. while ()

Thinking about errorsThinking about errors

� Hmm...

� That's not right...

� Uh-oh...

15-410, S'05- 4 -

What Could Possibly Go Wrong?

void

join0(int *tidp, void **statusp)

{

 mutex_lock(&zl);

 if (!(tp = findzombie())

 cond_wait(&zc, &zm);

 tp = findzombie();

 mutex_unlock(&zm);

 *tidp = ...; *statusp = ...

 zap(tp);

}

15-410, S'05- 5 -

What Could Possibly Go Wrong?

C usage noteC usage note

� Which is better?
 mutex_lock(&(objp->m));

 mutex_lock(&objp->m);

� What is the type of (&objp)->m ?

15-410, S'05- 6 -

What We Hope For

join0() exit()
mutex_lock(&zl);
if (!(...))
cond_wait(&zc, &zl);

mutex_lock(&zl);
append(self, ...)
cond_signal(&zc);
mutex_unlock(&zl);

tp = findzombie();
mutex_unlock(&zl);
...status...zap...

15-410, S'05- 7 -

What Went Wrong?

Nothing!Nothing!

15-410, S'05- 8 -

What Went Wrong?

Nothing!Nothing!

But what if there is But what if there is anotheranother thread? thread?

15-410, S'05- 9 -

Not Exactly What We Hope For

join0() exit() join0()
lock(&zl);
if (!(...))
wait(&zc, &zl);

lock(&zl);
append(...)
signal(&zc);
unlock(&zl);

lock(&zl);
tp = fndzmb();
unlock(&zl);

tp = fndzmb();
...deref NULL...

15-410, S'05- 10 -

Have We Seen This Before?

Dining Philosophers deadlock exampleDining Philosophers deadlock example

� Deadlock or not depended on scheduler

� Dining Philosophers really does exemplify lots of stuff

What went wrong?What went wrong?

� Protected world state wasn't ready for us

� We went to sleep

� Somebody prepared the world for us to run

� We ran

� We assumed nobody else had run

� We assumed the world state was still ready for us

15-410, S'05- 11 -

To “if()” Or Not To “if()”?

void

join0(int *tidp, void **statusp)

{

 mutex_lock(&zl);

 while (!(tp = findzombie())
 cond_wait(&zc, &zm);

 mutex_unlock(&zm);

 *tidp = ...; *statusp = ...

 zap(tp);

}

15-410, S'05- 12 -

Error Handling

Three kinds of errorThree kinds of error

� Hmm...

� That's not right...

� Uh-oh...

Important to classify & react appropriatelyImportant to classify & react appropriately

15-410, S'05- 13 -

“New Player” - Take 1
// Improve memory locality:

// store players in array

struct player players[MAX];

struct player *new_player(int team, int num)

{

 int i;

 if ((i = emptyslot()) == -1)

 /* OH NO!!! */

 MAGIC_BREAK;

 }

 ...

}

15-410, S'05- 14 -

“New Player” - Take 2
// Improve memory locality:

// store players in array

struct player players[MAX];

struct player *new_player(int team, int num)

{

 int i;

 if ((i = emptyslot()) == -1)

 /* OH NO!!! */

 while(1);

 }

 ...

}

15-410, S'05- 15 -

What's Going On?

“Out of table slots” - what kind of thing?“Out of table slots” - what kind of thing?

� Should really never happen?

� Might happen sometimes?

� Likely to happen once a day?

� Remember: users always want 110%!

What to do?What to do?

� Resolve reasonable issues when possible

15-410, S'05- 16 -

“New Player” - Take 3
struct player *players;

int playerslots;

struct player *new_player(int team, int num)

{

 int i;

 if ((i = emptyslot()) == -1)

 if ((i = grow_table_and_alloc()) == -1)

 /* OH NO!!! */

 while(1);

 }

 ...

}

15-410, S'05- 17 -

What's Going On?

“Out of heap space” - what kind of thing?“Out of heap space” - what kind of thing?

� Should really never happen?

� Might happen sometimes?

� Likely to happen once a day?

15-410, S'05- 18 -

What's Going On?

“Out of heap space” - what kind of thing?“Out of heap space” - what kind of thing?

� Should really never happen?

� Might happen sometimes?

� Likely to happen once a day?

My suggestionMy suggestion

� “Might happen sometimes”

What to do?What to do?

� Hard to say what the right thing is for all clients

� Is it fatal or not?

� Often: pass the buck

15-410, S'05- 19 -

“New Player” - Take 4
struct player *players;

int playerslots;

struct player *new_player(int team, int num)

{

 int i;

 if ((i = emptyslot()) == -1)

 if ((i = grow_table_and_alloc()) == -1)

 return (NULL);

 }

 ...

}

15-410, S'05- 20 -

“Free Player” - Take 1
void free_player(struct player *p)

{

 switch(player->role) {

 case CONTENDER:

 free(p->cstate); break;

 case REFEREE:

 free(p->refstate); break;

 }

 free(p->generic);

 mark_slot_available(p - players);

}

15-410, S'05- 21 -

What's Wrong?

There is a sanity-check missing...There is a sanity-check missing...

� Probably somebody will make a mistake eventually

� Let's catch it

15-410, S'05- 22 -

“Free Player” - Take 2
void free_player(struct player *p)

{

 switch(player->role) {

 case CONTENDER:

 free(p->cstate); break;

 case REFEREE:

 free(p->refstate); break;

 default: return;

 }

 free(p->generic);

 mark_slot_available(p - players);

}

15-410, S'05- 23 -

All Fixed?

No!No!

� The program has a bug

� Maybe the client is passing us random player pointers

� Maybe we are handing out invalid p->role values

� We happened to catch the bug this time

� We might not catch it every time!

� A random player pointer might have a “valid” p->role

The program is The program is brokenbroken

� Hiding the problem isn't our job

� Hiding the problem isn't even defensible

15-410, S'05- 24 -

Should We “Crash”?

If the program is “broken” , should we “crash”?If the program is “broken” , should we “crash”?

� Often: yes

� Dumping core allows debugger inspection of the problem

� Throwing running program into a debugger is probably nicer

15-410, S'05- 25 -

Summary

if vs. whileif vs. while

� If somebody can revoke your happiness, you'd better
check

Three kinds of errorThree kinds of error

� Hmm...

� Try to resolve

� That's not right...

� Try to report

� Uh-oh...

� Try to help the developer find the problem faster

