
15-410,S'06- 1 -

The Process
Jan. 25, 2006

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L05_Process

15-410
“Luckily the stack is a simple data structure.”

15-410,S'06- 2 -

Synchronization

P2/P3/P4 partnersP2/P3/P4 partners

� Partner deadline coming soon!

� If you already know who your partner is, please register
now

� It makes it easier for others to partner

� It will stem the tide of annoying reminder e-mail

Mid-term examMid-term exam

� Expected date: Thursday, March 2

� Evening, three hours

� 17:00-20:00

� 19:00-22:00

� Please let us know of conflicts

15-410,S'06- 3 -

Synchronization

Anybody reading comp.risks?Anybody reading comp.risks?

This lectureThis lecture

� Chapter 3, but not exactly!

� We are skipping 3.5 and 3.6, including the terrifying “POSIX
Shared Memory”

15-410,S'06- 4 -

Outline

Process as pseudo-machineProcess as pseudo-machine

� (that's all there is)

Process life cycleProcess life cycle

Process kernel statesProcess kernel states

Process kernel stateProcess kernel state

P1/P3 memory layoutP1/P3 memory layout

� (just a teaser for now)

15-410,S'06- 5 -

The Computer

Stack

Program

Registers

Keyboard

Screen

Timer

15-410,S'06- 6 -

The Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer

15-410,S'06- 7 -

Process life cycle
(nomenclature courtesy of The Godfathers)

BirthBirth

� (or, well, fission)

SchoolSchool

WorkWork

DeathDeath

15-410,S'06- 8 -

Birth

Where do new processes come from?Where do new processes come from?

� (Not: under a cabbage leaf, by stork, ...)

What do we need?What do we need?

� Memory contents

� Text, data, stack

� CPU register contents (N of them)

� "I/O ports"

� File descriptors, e.g., stdin/stdout/stderr

� Hidden “stuff”

� timer state, current directory, umask

15-410,S'06- 9 -

Birth

Intimidating?Intimidating?

How to specify all of that stuff?How to specify all of that stuff?

� What is your {name,quest,favorite_color}?

Gee, we already have Gee, we already have oneone process we like... process we like...

� Maybe we could use its settings to make a new one...

� Birth via “cloning”

15-410,S'06- 10 -

Birth – fork() - 1

“fork” - Original Unix process creation system call“fork” - Original Unix process creation system call

MemoryMemory

� Copy all of it

� Later lecture: VM tricks make copy cheaper

RegistersRegisters

� Copy all of them

� All but one: parent learns child's process ID, child gets 0

15-410,S'06- 11 -

Birth – fork() - 2

File descriptorsFile descriptors

� Copy all of them

� Can't copy the files!

� Copy references to open-file state

Hidden stuffHidden stuff

� Do whatever is "obvious"

ResultResult

� Original, “parent” , process

� Fully-specified “child” process, with 0 fork() parameters

15-410,S'06- 12 -

Now what?

Two copies of the same process is Two copies of the same process is boringboring

Transplant surgery!Transplant surgery!

� Implant new memory!

� New program text

� Implant new registers!

� Old ones don't point well into the new memory

� Keep (most) file descriptors

� Good for cooperation/delegation

� Hidden state?

� Do what's “obvious”

15-410,S'06- 13 -

Original Process

Stack

/bin/sh
Data
Heap

Registers

stdin

stdout

timer t=4

15-410,S'06- 14 -

Toss Heap, Data

Stack

/bin/sh

Registers

stdin

stdout

timer t=4

15-410,S'06- 15 -

Load New Code, Data From File

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer t=4

15-410,S'06- 16 -

Reset Stack, Heap

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer t=4[Heap]

15-410,S'06- 17 -

Fix “Stuff”

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer off[Heap]

15-410,S'06- 18 -

Initialize Registers

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer off[Heap]

15-410,S'06- 19 -

Begin Execution

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer offHeap

15-410,S'06- 20 -

What's The Implant Procedure
Called?

int execve(
 char *path,
 char *argv[],
 char *envp[])

15-410,S'06- 21 -

Birth - other ways

There is another wayThere is another way

� Well, two

spawn()spawn()

� Carefully specify all features of new process

� Complicated

� Win: don't need to copy stuff you will immediately toss

Plan 9 rfork() / Linux clone()Plan 9 rfork() / Linux clone()

� Build new process from old one

� Specify which things get shared vs. copied

� “Copy memory, share files, copy environment, share ...”

15-410,S'06- 22 -

School
Old process calledOld process called

execve(
char *path,
char *argv[],
char *envp[]);

Result isResult is
char **environ;
main(int argc,
 char *argv[])
{
 ...
}

15-410,S'06- 23 -

School

How does the magic work?How does the magic work?

� 15-410 motto: No magic

Kernel process setup: we saw...Kernel process setup: we saw...

� Toss old data memory

� Toss old stack memory

� Load executable file

Also...Also...

15-410,S'06- 24 -

The Stack!

Kernel builds stack for new processKernel builds stack for new process

� Transfers argv[] and envp[] to top of new process stack

� Hand-crafts stack frame for __main()

� Sets registers

� Stack pointer (to top frame)

� Program counter (to start of __main())

15-410,S'06- 25 -

Work

Process statesProcess states

� Running

� User mode

� Kernel mode

� Runnable

� User mode

� Kernel mode

� Sleeping

� “Blocked” awaiting some event

� Not run by scheduler

� Q: Is this user mode or kernel mode?

15-410,S'06- 26 -

Work

Other process statesOther process states

� Forking

� Probably obsolete, once used for special treatment

� Zombie

� Process has called exit(), parent hasn't noticed yet

“Exercise for the reader”“Exercise for the reader”

� Draw the state transition diagram

15-410,S'06- 27 -

Death

VoluntaryVoluntary
 void exit(int reason);

Hardware exceptionHardware exception

� SIGSEGV - no memory there for you!

Software exceptionSoftware exception

� SIGXCPU – used "too much" CPU time

15-410,S'06- 28 -

Death

kill(pid, sig);kill(pid, sig);

�

keyboard ^C ⇒ equivalent of

� kill(getpid(), SIGINT);

� Start logging

� kill(daemon_pid, SIGUSR1);

� % kill -USR1 33

15-410,S'06- 29 -

Death

kill(pid, sig);kill(pid, sig);

�

keyboard ^C ⇒ equivalent of

� kill(getpid(), SIGINT);

� Start logging

� kill(daemon_pid, SIGUSR1);

� % kill -USR1 33

� Lost in Space

� kill(Will_Robinson, SIGDANGER);

� I apologize to IBM for lampooning their serious signal
» No, I apologize for that apology...

15-410,S'06- 30 -

Process cleanup

Resource releaseResource release

� Open files: close()

� TCP: 2 minutes (or more)

� Solaris disk offline - forever (“None shall pass!”)

� Memory: release

AccountingAccounting

� Record resource usage in a magic file

Gone?Gone?

15-410,S'06- 31 -

“All You Zombies...”

Zombie processZombie process

� Process state reduced to exit code

� Waits around until parent calls wait()

� Copies exit code to parent memory

� Deletes PCB

15-410,S'06- 32 -

Kernel process state

The dreaded "PCB"The dreaded "PCB"

� (polychlorinated biphenol?)

Process Control BlockProcess Control Block

� “Everything without a user-visible memory address”

� Kernel management information

� Scheduler state

� The “stuff”

15-410,S'06- 33 -

Sample PCB contents

Pointer to CPU register save areaPointer to CPU register save area

Process number, parent process numberProcess number, parent process number

Countdown timer valueCountdown timer value

Memory segment infoMemory segment info

	 User memory segment list

	 Kernel stack reference

Scheduler infoScheduler info

	 linked list slot, priority, “ sleep channel”

15-410,S'06- 34 -

15-410 Virtual Memory Layout

Stack

Program

k-stack
k-stack

k-stack
k-stack

Kernel Data

Kernel Program

Stack

Program

Stack

Program

Stack

Program

15-410,S'06- 35 -

15-410 Physical Memory Layout

Kernel Memory

User Memory

16 MB

240 MB

15-410,S'06- 36 -

Ready to Implement All This?

Not so complicated...Not so complicated...

	 getpid()

	 fork()

	 exec()

	 wait()

	 exit()

What could possibly go wrong?What could possibly go wrong?

15-410,S'06- 37 -

Summary

Parts of a ProcessParts of a Process

	 Physical – Memory pages, registers, I/O devices

	 Virtual – Memory regions, registers, I/O “ports”

Birth, School, Work, DeathBirth, School, Work, Death

“Big Picture” of system memory – both of them“Big Picture” of system memory – both of them

	 (Numbers & arrangement are 15-410–specific)

