
15-410, Operating System Design & Implementation
Pebbles Kernel Specification

February 8, 2006

Contents

1 Introduction 2
1.1 Overview . 2

2 User Execution Environment 2

3 The System Call Interface 3
3.1 Invocation and Return 3
3.2 Semantics of System Call Interface 3
3.3 System Call Stub Library 3

4 System Call Specifications 4
4.1 Overview . 4
4.2 Task & Thread IDs . 5
4.3 Life Cycle . 5
4.4 Thread Management .7
4.5 Memory Management .8
4.6 Console I/O . 8
4.7 Miscellaneous System Interaction 9

1

1 Introduction

This document defines the correct behavior of kernels for theSpring 2006 edition of 15-410. The
goal of this document is to supply information about behavior rather than implementation details.
In Project 2 you will be given a kernel binary exhibiting these behaviors upon which to build your
thread library; later, in Project 3, you will construct a kernel which behaves this way.

1.1 Overview

The 410 kernel environment supports multiple address spaces via hardware paging, preemptive
multitasking, and a small set of important system calls. Also, the kernel supplies device drivers
for the keyboard, the console, and the interval timer.

2 User Execution Environment

The “Pebbles” kernel supports multiple independenttasks, each of which serves as a protection
domain. A task’s resources include various memory regions and “invisible” kernel resources
(such as a queue of task-exit notifications). Some versions of the kernel support file I/O, in which
case file descriptors are task resources as well.

Execution proceeds by the kernel schedulingthreads. Each thread represents an
independently-schedulable register set; all memory references and all system calls issued by
a thread represent accesses to resources defined and owned bythe thread’s enclosing task. A
task may contain multiple threads, in which case all have equal access to all task resources.
A carefully designed set of cooperating library routines can leverage this feature to provide a
simplified version of POSIX “pthreads.”

Multiprocessor versions of the kernel may simultaneously run multiple threads of a single
task, one thread for each of several tasks, or a mixture.

When a task begins execution of a new program, the operating system builds several memory
regions from the executable file and command line arguments:

� A read-only code region containing machine instructions

� An optional read-only-constant data region

� A read/write data region containing some variables.

� A single automatic stack region containing a mixture of variables and procedure call return
information. The stack begins at some “large” address and memory accesses typically
cause the kernel to add new pages, growing the region downward toward the top of the data
region. Of course, if they collide, disaster will result.

In addition, the task may add memory regions as specified below. All memory added to a
task’s address space after it begins running is zeroed before any thread of the task can access it.

2

Pebbles allows one task to create another though the use of the fork() andexec() system
calls, which you will not need for Project 2 (the shell program which we provide so you can
launch your test programs does use them).

3 The System Call Interface

3.1 Invocation and Return

User code will make requests of the kernel by issuing a software interrupt using theINT
instruction. Interrupt numbers are defined in410user/lib/inc/syscall int.h.

To invoke a system call, the following protocol is followed.If the system call takes one
32-bit parameter, it is placed in the%esi register. Then the appropriate interrupt, as defined
in syscall nums.h, is raised via theINT x instruction (each system call has been assigned its
own INT instruction, hence its own value ofx). If the system call expects more than one 32-bit
parameter, you should construct in memory a “system call packet” containing the parameters and
place theaddressof the packet in%esi.

To create such a packet in C you could use a structure:

struct read_line_parms {
int len;
char *buf;

} rlp;

If you use this approach, it is probably a good idea for you to think about the declarations of
your “packet” structures. In particular, you probably wantto consider how widely known these
types must be.

After filling in the packet, you would arrange for its address(e.g.,&rlp) to be placed in%esi.
When the system call completes, the return value, if any, will be available in the%eax register.

3.2 Semantics of System Call Interface

The 410 kernel verifies that every byte of every system call argument lies in a memory region
which the invoking thread’s task has appropriate permission to access. System calls will return
an integer error code less than zero if any part of any argument is invalid. The kerneldoes not
kill a user thread that invokes a system call with a bad argument. No action taken by user code
shouldevercause the kernel to crash, hang, or otherwise fail to performits job.

3.3 System Call Stub Library

While the kernel provides system calls for your use, it does not provide a “C library” which
accesses those calls. Before your programs can get the kernel to do anything for them, you will
need to implement an assembly code “stub” for each system call.

3

Stub routinesmustbe one per file and you should arrange for the Makefile infrastructure you
are given to build them intolibsyscall.a (see theREADME file in the tarball). While system
call stubs resemble the trap handler wrappers you wrote for Project 1, they are different in one
critical way. Since your kernel must always be ready to respond to any interrupt or trap, it
can potentially use every wrapper during each execution, and all must be linked (once) into the
kernel executable. However, the average user program doesnot invoke every system call during
the course of its execution. In fact, many user programs contain only a trivial amount of code.
If you create one huge system call stub file containing the code to invoke every system call, the
linker will happily append the huge .o file toeveryuser-level program you build and your “RAM
disk” file system will overflow, probably when we are trying tograde your project. So don’t do
that.

While the project tarball contains a singlesyscall.c, full of blank system call stubs, this
is only a convenience so that you can link test programs before you have completed all your
stubs–as you write each stub, this file should get smaller until eventually being deleted.

When building your stub library, youmust match the declarations we have provided in
410user/lib/inc/syscall.h in every detail. Otherwise, our test programs will not link against
your stub library. If you think there is a problem with a declaration we have given you, explain
your thinking to us–don’t just “fix” the declaration. Any system-call entry code which doesn’t
map straightforwardly from a declaration insyscall.h into code isn’t a “genuine” stub routine
and shouldn’t be part oflibsyscall.a–code specific to some application or facility should be
in the appropriate place in the directory tree.

Please remember your x86 calling convention rules. If you modify any callee-saved registers
inside your stub routines, you must restore their values before returning to your caller. The kernel,
of course, always preserves the values of all user-modifiable registers except when it explicity
modifies them according to the system call specifications.

4 System Call Specifications

4.1 Overview

The system calls provided by the 410 kernel can be broken intofive groups, namely

� Life Cycle

� Thread Management

� Memory Management

� Console I/O

� Miscellaneous System Interaction

The following descriptions of system calls use C function declaration syntax even though the
actual system call interface, as described in Section 3, is defined in terms of assembly-language

4

primitives. This means that student teams must write a system call stub library, as described in
Section 3.3, in order to invoke any system calls. This stub library is a deliverable.

Unless otherwise noted, system calls return zero on successand an error code less than zero
if something goes wrong.

One system call,thread fork, is presented without a C-style declaration. This is because
the actions performed bythread fork are outside of the scope of, and manipulate, the C
language runtime environment. You will need to determine for yourself the correct manner and
context for invokingthread fork. It is not an oversight thatthread fork is “missing” from
syscall.h, and you must not “fix” this oversight. If you feel a need to declare a C function called
thread fork(), think carefully about whether that is really the best name for the function, what
parameters it should take, who needs to “see” the declaration, etc.

4.2 Task & Thread IDs

Task and thread identification numbers are monotonically increasing throughout the execution of
the kernel. In other words, once there is a thread #35, there will not be another thread #35 until
an intervening four billion threads have been created.

4.3 Life Cycle

This group contains system calls which manage the creation and destruction of tasks and threads.

� int fork(void) - Creates a new task. The new task receives an exact, coherentcopy of
all memory regions of the invoking task. The new task contains a single thread which is
a copy of the thread invokingfork() except for the return value of the system call. If
fork() succeeds, the invoking thread will receive the ID of the new task’s thread and the
newly created thread will receive the value zero.

Errors are reported via a negative return value, in which case no new task has been created.

Some kernel implementations reject calls tofork() which take place while the invoking
task contains more than one thread.

� thread fork - Creates a new thread in the current task (i.e., the new thread will share all
task resources as described in Section 2). The value of%esi is ignored, i.e., the system call
has no parameters.

The invoking thread’s return value in%eax is the thread ID of the newly-created thread; the
new thread’s return value is zero. All other registers in thenew thread will be initialized to
the same values as the corresponding registers in the old thread.

Errors are reported via a negative return value, in which case no new thread has been
created.

Some kernel versions reject calls tofork() or exec() which take place while the invoking
task contains more than one thread.

5

� int exec(char *execname, char **argvec) - Replaces the program currently
running in the invoking task with the program stored in the file namedexecname. The
argumentargvec points to a null-terminated vector of null-terminated string arguments.

The number of strings in the vector and the vector itself willbe transported into the memory
of the new task where they will serve as the first and second arguments of the the new
program’smain(), respectively. It is conventional thatargvec[0] is the same string as
execname andargvec[1] is the first command line parameter, etc. Some programs will
behave oddly if this convention is not followed.

Reasonable limits may be placed on the number of arguments that a user program may pass
to exec(), and the length of each argument.

The kernel does as much validation as possible of theexec() request before deallocating
the old program’s resources.

On success, this system call does not return to the invoking program, since it is no longer
running. If something goes wrong, an integer error code lessthan zero will be returned.

Some kernel versions reject calls toexec() which take place while the invoking task
contains more than one thread.

� void exit(int status) - Terminates execution of the calling thread immediately. If the
invoking thread is the last thread in its task, the kernel deallocates all resources in use by the
task and makes thestatus parameter available to the parent task (the task which created
this one usingfork()) via wait(). If the parent task is no longer running, the exit status
is made available to the kernel-launched “init” task instead. If the invoking thread is not
the last thread in its task,status will be ignored.

If the kernel decides to kill a thread, the effect should be the same as if the thread
had invokedexit(-2), except that the kernel can generally be expected to displayan
appropriate message on the system console.

Theexit() of one thread, voluntary or involuntary, does not cause the kernel to destroy
other threads in the same task.

� int wait(int *status ptr) -

Collects the exit status of a task, defined as thestatus parameter provided to theexit()
system call by the final thread in the task, and stores it in theinteger referenced by
status ptr.

If no error occurs, the return value ofwait() is the thread ID of thefirst thread of the
exiting task,not the thread ID of the last thread in that task toexit(). This should make
sense if you consider howfork(), exit(), andwait() interact.

The wait() system call may be invoked simultaneously by any number of threads in a
task; exit statuses may be matched towait()’ing threads in any non-pathological way. If
one or more threads invokewait() while there are child tasks which have not yet exited,
they will block until one exits.

6

Whenever a task has no un-exited child tasks, any pending or new calls towait() will
return an integer error code less than zero.

� void task exit(int status) - Causes all threads of a task to exit. The behavior of
the system call should be as if the invoking thread “exits last,” i.e., thestatus parameter
becomes the exit status of the task as described above.

The threads must exit “in a timely fashion,” meaning that it isnot ok for task exit() to
“wait around” for threads to complete very-long-running orunbounded-time operations.

4.4 Thread Management
� int gettid() - Returns the thread ID of the invoking thread.

� int yield(int tid) - Defers execution of the invoking thread to a time determined
by the scheduler, in favor of the thread with IDtid. If tid is -1, the scheduler may
determine which thread to run next. The only threads whose scheduling should be affected
by yield() are the calling thread and the thread that isyield()ed to. If the thread with
ID tid is not runnable, blocked in a system call, or doesn’t exist, then an integer error code
less than zero is returned. Zero is returned on success.

� int deschedule(int *reject) - Atomically checks the integer pointed to byreject
and acts on it. If the integer is non-zero, the call returns immediately with return value
zero. If the integer pointed to byreject is zero, then the calling thread will not be run
by the scheduler until amake runnable() call is made specifying thedeschedule()’d
thread, at which pointdeschedule() will return zero.

An integer error code less than zero is returned if reject is not a valid pointer.

This system call isatomicwith respect tomake runnable(): the process of examining
reject and suspending the thread will not be interleaved with any execution of
make runnable() specifying the thread callingdeschedule().

� int make runnable(int tid) - Makes thedeschedule()d thread with IDtid runnable
by the scheduler. On success, zero is returned. An integer error code less than zero will be
returned unlesstid is the ID of a thread which exists but is currently non-runnable due to
a call todeschedule().

� unsigned int get ticks(void) - Returns the number of timer ticks which have
occurred since system boot.

� int sleep(int ticks) - Deschedules the calling thread until at leastticks timer
interrupts have occurred after the call. Returns immediately if ticks is zero. Returns
an integer error code less than zero ifticks is negative. Returns zero otherwise.

7

4.5 Memory Management
� int new pages(void *base, int len) - Allocates new memory to the invoking task,

starting atbase and extending forlen bytes.

new pages() will fail, returning a negative integer error code, ifbase is not page-aligned,
if len is not a positive integral multiple of the system page size, if any portion of the region
already represents memory in the task’s address space, if the new memory region would
be too close1 to the bottom of the automatic stack region, or if the operating system has
insufficient resources to satisfy the request.

Otherwise, the return code will be zero and the new memory will immediately be visible
to all threads in the invoking task.

� int remove pages(void *base) - Deallocates the specified memory region, which must
presently be allocated as the result of a previous call tonew pages() which specified the
same value ofbase. Returns zero if successful or returns a negative integer failure code.

4.6 Console I/O
� char getchar() - Returns a single character from the character input stream. If the input

stream is empty the thread is descheduled until a character is available. If some other
thread is descheduled on areadline() or getchar(), then the calling thread must block
and wait its turn to access the input stream. Characters processed by thegetchar() system
call should not be echoed to the console.

� int readline(int len, char *buf) - Reads the next line from the console and copies
it into the buffer pointed to bybuf.

If there is no line of input currently available, the callingthread is descheduled until one
is. If some other thread is descheduled on areadline() or agetchar(), then the calling
thread must block and wait its turn to access the input stream. The length of the buffer is
indicated bylen. If the line is smaller than the buffer, then the complete line including the
newline character is copied into the buffer. If the length ofthe line exceeds the length of
the buffer, onlylen characters should be copied intobuf. Available characters should not
be committed intobuf until there is a newline character available, so the user hasa chance
to backspace over typing mistakes.

Characters that will be consumed by areadline() should be echoed to the console as
soon as possible. If there is no outstanding call toreadline() no characters should
be echoed. Echoed user input may be interleaved with output due to calls toprint().
Characters not placed in the buffer should remain availablefor other calls toreadline()
and/orgetchar(). Some kernel implementations may choose to regard characters which
have been echoed to the screen but which have not been placed into a user buffer to be
“dedicated” toreadline() and not available togetchar().

1Two pages is too close. Other values might be too close also.

8

The readline system call returns the number of bytes copied into the buffer. An integer
error code less than zero is returned ifbuf is not a valid memory address, ifbuf falls in a
read-only memory region of the task, or iflen is “unreasonably” large.2

� int print(int len, char *buf) - Printslen bytes of memory, starting atbuf, to the
console. The calling thread should block until all characters have been printed to the
console. Output of two concurrentprint()s should not be intermixed. Iflen is larger
than some reasonable maximum or ifbuf is not a valid memory address, an integer error
code less than zero should be returned.

Characters printed to the console invoke standard newline,backspace, and scrolling
behaviors.

� int set term color(int color) - Sets the terminal print color for any future output to
the console. Ifcolor does not specify a valid color, an integer error code less than zero
should be returned. Zero is returned on success.

� int set cursor pos(int row, int col) - Sets the cursor to the location(row, col).
If the location is not valid, an integer error code less than zero is returned. Zero is returned
on success.

� int get cursor pos(int *row, int *col) - Writes the current location of the cursor
to the addresses provided as arguments. If the arguments arenot valid addresses, then an
error code less than zero is returned. Zero is returned on success.

4.7 Miscellaneous System Interaction
� int ls(int size, char *buf) - Fills in the user-specified buffer with the names of

executable files stored in the system’s RAM disk “file system.” If there is enough room
in the buffer for all of the (null-terminated) file namesand an additional null byte after
the last filename’s terminating null, the system call will return the number of filenames
successfully copied. Otherwise, an error code less than zero is returned and the contents
of the buffer are undefined. For the curious among you, this system call is (very) loosely
modeled on the System Vgetdents() call.

� void halt() - Ceases execution of the operating system. The exact operation of this
system call depends on the kernel’s implementation and execution environment. Kernels
running under Simics should shut down the simulation via a call to SIM halt(). However,
implementations should be prepared to do something reasonable if SIM halt() is a no-op,
which will happen if the kernel is run on real hardware.

2Deciding on this threshold is easier than it may seem at first,so if you feel like you need to ask us for a
clarification you should probably think further.

9

	Introduction
	Overview

	User Execution Environment
	The System Call Interface
	Invocation and Return
	Semantics of System Call Interface
	System Call Stub Library

	System Call Specifications
	Overview
	Task & Thread IDs
	Life Cycle
	Thread Management
	Memory Management
	Console I/O
	Miscellaneous System Interaction

