
15-410, F’191

NFS & AFS
Nov. 20, 2019

Dave EckhardtDave Eckhardt

Garth GIbsonGarth GIbson

L10_NFSAFS

15-410

15-410, F’192

Outline

Why remote file systems?Why remote file systems?

VFS interceptionVFS interception

NFSv2/v3 vs. AFSNFSv2/v3 vs. AFS
 Ping-pong mode: 5 topics discussed twice

NFSv4NFSv4
 Partial description of evolution

Why talk about NFSv2?Why talk about NFSv2?
 Still in use in some situations

 Better shows how design influences results

15-410, F’193

Why?

Why remote file systems?Why remote file systems?

Lots of “access data everywhere” technologiesLots of “access data everywhere” technologies
 Laptops

 iPods

 Multi-gigabyte flash-memory keychain USB devices

Are remote file systems dinosaurs?Are remote file systems dinosaurs?

15-410, F’194

Remote File System Benefits

ReliabilityReliability
 Not many people carry multiple copies of data

 Multiple copies with you aren't much protection

 Backups are nice

 Machine rooms are nice

» Temperature-controlled, humidity-controlled

» Fire-suppressed

 Time travel is nice too

SharingSharing
 Allows multiple users to access data

 May provide authentication mechanism

15-410, F’195

Remote File System Benefits

ScalabilityScalability
 Large disks are cheaper

Locality of referenceLocality of reference
 You don't use every file every day...

 Why carry everything in expensive portable storage?

AuditabilityAuditability
 Easier to know who said what when with central storage...

15-410, F’196

VFS interception

VFS provides “pluggable” file systemsVFS provides “pluggable” file systems

Standard flow of remote accessStandard flow of remote access
 User process calls read()

 Kernel dispatches to VOP_READ() in some VFS

 nfs_read()

 check local cache

 send RPC to remote NFS server

 block process

15-410, F’197

VFS interception

Standard flow of remote access (continued)Standard flow of remote access (continued)
 client kernel process manages call to server

 retransmit if necessary

 convert RPC response to file system buffer

 store in local cache

 unblock user process

 back to nfs_read()

 copy bytes to user memory

Same story for AFSSame story for AFS

15-410, F’198

Comparisons

Compared todayCompared today
 Sun Microsystems/Oracle NFS (mostly we discuss v2/v3)

 CMU/IBM/Transarc/IBM/OpenAFS.org AFS

Architectural assumptions & goalsArchitectural assumptions & goals
 Architectural assumptions & goals

 Namespace

 Authentication, access control

 I/O flow

 Rough edges

Wrap-up: NFS v4 evolutionWrap-up: NFS v4 evolution

15-410, F’199

NFSv2 Assumptions, goals

Workgroup file systemWorkgroup file system
 Small number of clients

 Very small number of servers

Single administrative domainSingle administrative domain
 All machines agree on “set of users”

 ...which users are in which groups

 Client machines run mostly-trusted OS

 “User #37 says read(...)”

15-410, F’1910

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

15-410, F’1911

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)Some inherently “stateful” operations (locking!!)

15-410, F’1912

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)Some inherently “stateful” operations (locking!!)
 Handled by “separate service” “outside of NFS”

 Slick trick, eh?

15-410, F’1913

AFS Assumptions, goals

Global distributed file systemGlobal distributed file system
 Uncountable clients, servers

 “One AFS”, like “one Internet”

 Why would you want more than one?

Multiple administrative domainsMultiple administrative domains
 username@cellname

 de0u@andrew.cmu.edu

 davide@cs.cmu.edu

15-410, F’1914

AFS Assumptions, goals

Client machines are un-trustedClient machines are un-trusted
 Must prove they act for a specific user

 Secure RPC layer

 Anonymous “system:anyuser”

Client machines have disks (!!)Client machines have disks (!!)
 Can cache whole files over long periods

Write/write and write/read sharing are rareWrite/write and write/read sharing are rare
 Most files updated by one user

 Most users on one machine at a time

15-410, F’1915

AFS Assumptions, goals

Support Support manymany clients clients
 1000 machines could cache a single file

 Some local, some (very) remote

15-410, F’1916

NFS Namespace

Constructed by client-side file system mountsConstructed by client-side file system mounts
 mount server1:/usr/local /usr/local

 mount server2:/usr/spool/mail /usr/spool/mail

Group of clients Group of clients can achievecan achieve common namespace common namespace
 Every machine can execute same mount sequence at boot

 If system administrators are diligent

15-410, F’1917

NFS Namespace

““Auto-mount” process mounts based on “maps”Auto-mount” process mounts based on “maps”
 /home/dae means server1:/home/dae

 /home/owens means server2:/home/owens

Referring to something in /home may trigger anReferring to something in /home may trigger an
automatic mountautomatic mount

 “After a while” the remote file system may be
automatically unmounted

15-410, F’1918

NFS Security

Client machine presents credentialsClient machine presents credentials
 user #, list of group #s – from Unix process

Server accepts or rejects credentialsServer accepts or rejects credentials
 “root squashing”

 map uid 0 to uid -1 unless client on “special machine” list

Kernel process on server “adopts” credentialsKernel process on server “adopts” credentials
 Sets user #, group vector based on RPC

 Makes system call (e.g., read()) with those credentials

15-410, F’1919

AFS Namespace

Assumed-global list of AFS cellsAssumed-global list of AFS cells

Everybody sees same files in each cellEverybody sees same files in each cell
 Multiple servers inside cell invisible to user

Group of clients Group of clients can achievecan achieve private namespace private namespace
 Use custom cell database

15-410, F’1920

AFS Security

Client machine presents Kerberos ticketClient machine presents Kerberos ticket
 Allows arbitrary binding of (machine,user) to

(realm,principal)

 davide on a cs.cmu.edu machine can be
de0u@andrew.cmu.edu

 iff the password is known!

Server checks against Server checks against access control listaccess control list

15-410, F’1921

AFS ACLs

Apply to directory, not to individual filesApply to directory, not to individual files

ACL formatACL format
 de0u rlidwka

 davide@cs.cmu.edu rl

 de0u:friends rl

Negative rightsNegative rights
 Disallow “joe rl” even though joe is in de0u:friends

15-410, F’1922

AFS ACLs

AFS ACL semantics are not Unix semanticsAFS ACL semantics are not Unix semantics
 Some parts obeyed in a vague way

 Cache manager checks for files being executable, writable

 Many differences

 Inherent/good: can name people in different administrative
domains

 “Just different”

» ACLs are per-directory, not per-file

» Different privileges: create, remove, lock

15-410, F’1923

NFS protocol architecture

root@client executes “mount filesystem” RPCroot@client executes “mount filesystem” RPC
 returns “file handle” for root of remote file system

client RPC for each pathname componentclient RPC for each pathname component
 /usr/local/lib/emacs/foo.el in /usr/local file system

 h = lookup(root-handle, “lib”)

 h = lookup(h, “emacs”)

 h = lookup(h, “foo.el”)

 Allows disagreement over pathname syntax

 Look, Ma, no “/”!

15-410, F’1924

NFS protocol architecture

I/O RPCs are I/O RPCs are idempotentidempotent
 multiple repetitions have same effect as one

 lookup(h, “emacs”) generally returns same result

 read(file-handle, offset, length) ⇒ same bytes

 write(file-handle, offset, buffer, bytes) ⇒ “ok”

RPCs do not create server-memory stateRPCs do not create server-memory state
 no RPC calls for open()/close()

 write() succeeds (to disk), or fails, before RPC completes

15-410, F’1925

NFS “file handles”

GoalsGoals
 Reasonable size

 Quickly map to file on server

 “Capability”

 Hard to forge, so possession serves as “proof”

Implementation (inode #, inode generation #)Implementation (inode #, inode generation #)
 inode # - small, fast for server to map onto data

 “inode generation #” - must match value stored in inode

 “unguessably random” number chosen in create()

15-410, F’1926

NFS Directory Operations

Primary goalPrimary goal
 Insulate clients from server directory format

ApproachApproach
 readdir(dir-handle, cookie, nbytes) returns list

 name, inode # (for display by ls -l), cookie

15-410, F’1927

AFS protocol architecture

VolumeVolume = miniature file system = miniature file system
 One user's files, project source tree, ...

 Unit of disk quota administration, backup

 Mount points are pointers to other volumes

Client machine has Cell-Server DatabaseClient machine has Cell-Server Database
 /afs/andrew.cmu.edu is a cell

 protection server handles authentication

 volume location server maps volumes to file servers

15-410, F’1928

AFS protocol architecture

Volume location is Volume location is dynamicdynamic
 Moved between servers transparently to user

Volumes may have multiple Volumes may have multiple replicasreplicas
 Increase throughput, reliability

 Restricted to “read-only” volumes

 /usr/local/bin

 /afs/andrew.cmu.edu/usr

15-410, F’1929

AFS Callbacks

ObservationsObservations
 Client disks can cache files indefinitely

 Even across reboots

 Many files nearly read-only

 Contacting server on each open() is wasteful

Server issues Server issues callback promisecallback promise
 “If this file changes in 15 minutes, I will tell you”

 Via callback break message

 15 minutes of free open(), read() for that client

 More importantly, 15 minutes of peace for server

15-410, F’1930

AFS “file identifiers”

AFS “fid” has three partsAFS “fid” has three parts
 Volume number

 Each file lives in a volume

 Unlike NFS “server1's /usr0”

 File number

 inode # (as NFS)

 “Uniquifier”

 allows inodes to be re-used

 Similar to NFS file handle inode generation #s

15-410, F’1931

AFS Directory Operations

Primary goalPrimary goal
 Don't overload servers!

ApproachApproach
 Server stores directory as hash table on disk

 Client fetches entire directory as if a file

 Client parses hash table

 Directory maps name to fid

 Client caches directory (indefinitely, across reboots)

 Server load reduced

15-410, F’1932

AFS access pattern

open(“/afs/cs.cmu.edu/service/systypes”)open(“/afs/cs.cmu.edu/service/systypes”)
 VFS layer hands off “/afs” to AFS client module

 Client maps cs.cmu.edu to pt & vldb servers

 Client authenticates to pt server

 Client volume-locates root.cell volume

 Client fetches “/” directory

 Client fetches “service” directory

 Client fetches “systypes” file

15-410, F’1933

AFS access pattern

open(“/afs/cs.cmu.edu/service/newCSDB”)open(“/afs/cs.cmu.edu/service/newCSDB”)
 VFS layer hands off “/afs” to AFS client module

 Client fetches “newCSDB” file

open(“/afs/cs.cmu.edu/service/systypes”)open(“/afs/cs.cmu.edu/service/systypes”)
 Assume

 File is in cache

 Server hasn't broken callback

 Callback hasn't expired

 Client can read file with no server interaction

15-410, F’1934

AFS access pattern

Data transfer is by Data transfer is by chunkschunks
 Minimally 64 KB

 May be whole-file

WriteWritebackback cache cache
 AFSv2 stored entire file back atomically

 AFSv3 stores “chunks” back to server

 When cache overflows

 On last user close()

15-410, F’1935

AFS access pattern

Is writeback crazy?Is writeback crazy?
 Write conflicts “assumed rare”

 Who needs to see a half-written file?

 Locking can be used (often isn't)

15-410, F’1936

NFS v2/v3 “rough edges”

LockingLocking
 Inherently stateful

 lock must persist across client calls

» lock(), read(), write(), unlock()

 “Separate service”

 Handled by same server

 Horrible things happen on server crash

 Horrible things happen on client crash

15-410, F’1937

NFS v2/v3 “rough edges”

Some operations not really idempotentSome operations not really idempotent
 unlink(file) returns “ok” once, then “no such file”

 server caches “a few” client requests

CachingCaching
 No real consistency guarantees

 Clients typically cache attributes, data “for a while”

 No way to know when they're wrong

15-410, F’1938

NFS v2/v3 “rough edges”

Large NFS installations are brittleLarge NFS installations are brittle
 Everybody must agree on many mount points

 Hard to load-balance files among servers

 No volumes

 No atomic moves

Cross-realm NFS access basically nonexistentCross-realm NFS access basically nonexistent
 No good way to map uid#47 from an unknown host

15-410, F’1939

AFS “rough edges”

LockingLocking
 Server refuses to keep a waiting-client list

 Client cache manager refuses to poll server

 Result

 Lock returns “locked” or “try again later”

 User program must invent polling strategy

Chunk-based I/OChunk-based I/O
 No real consistency guarantees

 close() failures are surprising to many programs

15-410, F’1940

AFS “rough edges”

ACLs apply to directoriesACLs apply to directories
 “Makes sense” if files in a directory logically should be

protected the same way

 Not always true

 Confuses users

New directories inherit ACL from parentNew directories inherit ACL from parent
 Easy to expose a whole tree accidentally

 What else to do?

 No good solution known

 (Though complex solutions exist...)

15-410, F’1941

AFS “rough edges”

Small AFS installations are punitiveSmall AFS installations are punitive
 Step 1: Install Kerberos

 2-3 servers

 Inside locked boxes!

 Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb)

 Step 3: Explain Kerberos to your users

 Ticket expiration!

 Step 4: Explain ACLs to your users

15-410, F’1942

Summary - NFSv2

Workgroup network file serviceWorkgroup network file service

Any Unix machine can be a server (easily)Any Unix machine can be a server (easily)

Machines can be both client & serverMachines can be both client & server
 My files on my disk, your files on your disk

 Everybody in group can access all files

Serious trust, scaling problemsSerious trust, scaling problems

““Stateless file server” model only partial successStateless file server” model only partial success

15-410, F’1943

Summary – AFS

Worldwide file systemWorldwide file system

Good security, scalingGood security, scaling

Global namespaceGlobal namespace

““Professional” server infrastructure per cellProfessional” server infrastructure per cell
 Don't try this at home

 Only ~200 public AFS cells as of 2016-03-21

 9 are cmu.edu, ~15 are in Pittsburgh

 These numbers are basically static since 2002 (!!!)

““No write conflict” model only partial successNo write conflict” model only partial success

15-410, F’1944

NFSv4 Changes

Genuine authenticationGenuine authentication
 Each client RPC is authenticated via Kerberos

ACL'sACL's
 “Like NTFS”, “Like POSIX”

 Include allow/deny, plus audit/alarm

 “Create file” is a separate ability from “create directory'

 Can specify different access for “network user” and
“dialup user” (???)

 NFSv4 ACL's don't match any OS native ACL format

 Server can approximate or reject any ACL you try to set

15-410, F’1945

NFSv4 Changes

Compound RPCCompound RPC
 open()+lock()+read()+write()+unlock()+close() in one

packet

 Can look up multiple pathname components

 Greatly speeds up performance on long-latency wide-area
networks

““Delegations” of file data & metadata to clientsDelegations” of file data & metadata to clients
 More general than AFS callbacks

Better locking architectureBetter locking architecture
 Locks can persist across crashes

 Requires tricky “client identification” semantics

15-410, F’1946

NFSv4 Changes

Other additionsOther additions
 Replication of mostly-read-only trees

 “Redirect” support for file relocation

 Tricky pathname-rewrite step

NFSv4.2 in progressNFSv4.2 in progress
 Multi-realm operation

 Parallel NFS

15-410, F’1947

Conclusions

NFS v2NFS v2
 Goals limited to near-term achievability

AFSAFS
 Available-now large cells and cross-realm operation

NFS v4NFS v4
 Evolution may be a better strategy than revolution!

15-410, F’1948

Further Reading

NFSNFS
 RFC 1094 for v2 (3/1989)

 RFC 1813 for v3 (6/1995)

 RFC 3530 for v4 (4/2003, not yet universally available)

15-410, F’1949

Further Reading

AFSAFS
 “The ITC Distributed File System: Principles and Design”,

Proceedings of the 10th ACM Symposium on Operating
System Principles, Dec. 1985, pp. 35-50.

 “Scale and Performance in a Distributed File System”,
ACM Transactions on Computer Systems, Vol. 6, No. 1,
Feb. 1988, pp. 51-81.

 IBM AFS User Guide, version 36

 http://www.cs.cmu.edu/~help/afs/index.html

