
15-410, F’191

NFS & AFS
Nov. 20, 2019

Dave EckhardtDave Eckhardt

Garth GIbsonGarth GIbson

L10_NFSAFS

15-410

15-410, F’192

Outline

Why remote file systems?Why remote file systems?

VFS interceptionVFS interception

NFSv2/v3 vs. AFSNFSv2/v3 vs. AFS
 Ping-pong mode: 5 topics discussed twice

NFSv4NFSv4
 Partial description of evolution

Why talk about NFSv2?Why talk about NFSv2?
 Still in use in some situations

 Better shows how design influences results

15-410, F’193

Why?

Why remote file systems?Why remote file systems?

Lots of “access data everywhere” technologiesLots of “access data everywhere” technologies
 Laptops

 iPods

 Multi-gigabyte flash-memory keychain USB devices

Are remote file systems dinosaurs?Are remote file systems dinosaurs?

15-410, F’194

Remote File System Benefits

ReliabilityReliability
 Not many people carry multiple copies of data

 Multiple copies with you aren't much protection

 Backups are nice

 Machine rooms are nice

» Temperature-controlled, humidity-controlled

» Fire-suppressed

 Time travel is nice too

SharingSharing
 Allows multiple users to access data

 May provide authentication mechanism

15-410, F’195

Remote File System Benefits

ScalabilityScalability
 Large disks are cheaper

Locality of referenceLocality of reference
 You don't use every file every day...

 Why carry everything in expensive portable storage?

AuditabilityAuditability
 Easier to know who said what when with central storage...

15-410, F’196

VFS interception

VFS provides “pluggable” file systemsVFS provides “pluggable” file systems

Standard flow of remote accessStandard flow of remote access
 User process calls read()

 Kernel dispatches to VOP_READ() in some VFS

 nfs_read()

 check local cache

 send RPC to remote NFS server

 block process

15-410, F’197

VFS interception

Standard flow of remote access (continued)Standard flow of remote access (continued)
 client kernel process manages call to server

 retransmit if necessary

 convert RPC response to file system buffer

 store in local cache

 unblock user process

 back to nfs_read()

 copy bytes to user memory

Same story for AFSSame story for AFS

15-410, F’198

Comparisons

Compared todayCompared today
 Sun Microsystems/Oracle NFS (mostly we discuss v2/v3)

 CMU/IBM/Transarc/IBM/OpenAFS.org AFS

Architectural assumptions & goalsArchitectural assumptions & goals
 Architectural assumptions & goals

 Namespace

 Authentication, access control

 I/O flow

 Rough edges

Wrap-up: NFS v4 evolutionWrap-up: NFS v4 evolution

15-410, F’199

NFSv2 Assumptions, goals

Workgroup file systemWorkgroup file system
 Small number of clients

 Very small number of servers

Single administrative domainSingle administrative domain
 All machines agree on “set of users”

 ...which users are in which groups

 Client machines run mostly-trusted OS

 “User #37 says read(...)”

15-410, F’1910

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

15-410, F’1911

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)Some inherently “stateful” operations (locking!!)

15-410, F’1912

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)Some inherently “stateful” operations (locking!!)
 Handled by “separate service” “outside of NFS”

 Slick trick, eh?

15-410, F’1913

AFS Assumptions, goals

Global distributed file systemGlobal distributed file system
 Uncountable clients, servers

 “One AFS”, like “one Internet”

 Why would you want more than one?

Multiple administrative domainsMultiple administrative domains
 username@cellname

 de0u@andrew.cmu.edu

 davide@cs.cmu.edu

15-410, F’1914

AFS Assumptions, goals

Client machines are un-trustedClient machines are un-trusted
 Must prove they act for a specific user

 Secure RPC layer

 Anonymous “system:anyuser”

Client machines have disks (!!)Client machines have disks (!!)
 Can cache whole files over long periods

Write/write and write/read sharing are rareWrite/write and write/read sharing are rare
 Most files updated by one user

 Most users on one machine at a time

15-410, F’1915

AFS Assumptions, goals

Support Support manymany clients clients
 1000 machines could cache a single file

 Some local, some (very) remote

15-410, F’1916

NFS Namespace

Constructed by client-side file system mountsConstructed by client-side file system mounts
 mount server1:/usr/local /usr/local

 mount server2:/usr/spool/mail /usr/spool/mail

Group of clients Group of clients can achievecan achieve common namespace common namespace
 Every machine can execute same mount sequence at boot

 If system administrators are diligent

15-410, F’1917

NFS Namespace

““Auto-mount” process mounts based on “maps”Auto-mount” process mounts based on “maps”
 /home/dae means server1:/home/dae

 /home/owens means server2:/home/owens

Referring to something in /home may trigger anReferring to something in /home may trigger an
automatic mountautomatic mount

 “After a while” the remote file system may be
automatically unmounted

15-410, F’1918

NFS Security

Client machine presents credentialsClient machine presents credentials
 user #, list of group #s – from Unix process

Server accepts or rejects credentialsServer accepts or rejects credentials
 “root squashing”

 map uid 0 to uid -1 unless client on “special machine” list

Kernel process on server “adopts” credentialsKernel process on server “adopts” credentials
 Sets user #, group vector based on RPC

 Makes system call (e.g., read()) with those credentials

15-410, F’1919

AFS Namespace

Assumed-global list of AFS cellsAssumed-global list of AFS cells

Everybody sees same files in each cellEverybody sees same files in each cell
 Multiple servers inside cell invisible to user

Group of clients Group of clients can achievecan achieve private namespace private namespace
 Use custom cell database

15-410, F’1920

AFS Security

Client machine presents Kerberos ticketClient machine presents Kerberos ticket
 Allows arbitrary binding of (machine,user) to

(realm,principal)

 davide on a cs.cmu.edu machine can be
de0u@andrew.cmu.edu

 iff the password is known!

Server checks against Server checks against access control listaccess control list

15-410, F’1921

AFS ACLs

Apply to directory, not to individual filesApply to directory, not to individual files

ACL formatACL format
 de0u rlidwka

 davide@cs.cmu.edu rl

 de0u:friends rl

Negative rightsNegative rights
 Disallow “joe rl” even though joe is in de0u:friends

15-410, F’1922

AFS ACLs

AFS ACL semantics are not Unix semanticsAFS ACL semantics are not Unix semantics
 Some parts obeyed in a vague way

 Cache manager checks for files being executable, writable

 Many differences

 Inherent/good: can name people in different administrative
domains

 “Just different”

» ACLs are per-directory, not per-file

» Different privileges: create, remove, lock

15-410, F’1923

NFS protocol architecture

root@client executes “mount filesystem” RPCroot@client executes “mount filesystem” RPC
 returns “file handle” for root of remote file system

client RPC for each pathname componentclient RPC for each pathname component
 /usr/local/lib/emacs/foo.el in /usr/local file system

 h = lookup(root-handle, “lib”)

 h = lookup(h, “emacs”)

 h = lookup(h, “foo.el”)

 Allows disagreement over pathname syntax

 Look, Ma, no “/”!

15-410, F’1924

NFS protocol architecture

I/O RPCs are I/O RPCs are idempotentidempotent
 multiple repetitions have same effect as one

 lookup(h, “emacs”) generally returns same result

 read(file-handle, offset, length) ⇒ same bytes

 write(file-handle, offset, buffer, bytes) ⇒ “ok”

RPCs do not create server-memory stateRPCs do not create server-memory state
 no RPC calls for open()/close()

 write() succeeds (to disk), or fails, before RPC completes

15-410, F’1925

NFS “file handles”

GoalsGoals
 Reasonable size

 Quickly map to file on server

 “Capability”

 Hard to forge, so possession serves as “proof”

Implementation (inode #, inode generation #)Implementation (inode #, inode generation #)
 inode # - small, fast for server to map onto data

 “inode generation #” - must match value stored in inode

 “unguessably random” number chosen in create()

15-410, F’1926

NFS Directory Operations

Primary goalPrimary goal
 Insulate clients from server directory format

ApproachApproach
 readdir(dir-handle, cookie, nbytes) returns list

 name, inode # (for display by ls -l), cookie

15-410, F’1927

AFS protocol architecture

VolumeVolume = miniature file system = miniature file system
 One user's files, project source tree, ...

 Unit of disk quota administration, backup

 Mount points are pointers to other volumes

Client machine has Cell-Server DatabaseClient machine has Cell-Server Database
 /afs/andrew.cmu.edu is a cell

 protection server handles authentication

 volume location server maps volumes to file servers

15-410, F’1928

AFS protocol architecture

Volume location is Volume location is dynamicdynamic
 Moved between servers transparently to user

Volumes may have multiple Volumes may have multiple replicasreplicas
 Increase throughput, reliability

 Restricted to “read-only” volumes

 /usr/local/bin

 /afs/andrew.cmu.edu/usr

15-410, F’1929

AFS Callbacks

ObservationsObservations
 Client disks can cache files indefinitely

 Even across reboots

 Many files nearly read-only

 Contacting server on each open() is wasteful

Server issues Server issues callback promisecallback promise
 “If this file changes in 15 minutes, I will tell you”

 Via callback break message

 15 minutes of free open(), read() for that client

 More importantly, 15 minutes of peace for server

15-410, F’1930

AFS “file identifiers”

AFS “fid” has three partsAFS “fid” has three parts
 Volume number

 Each file lives in a volume

 Unlike NFS “server1's /usr0”

 File number

 inode # (as NFS)

 “Uniquifier”

 allows inodes to be re-used

 Similar to NFS file handle inode generation #s

15-410, F’1931

AFS Directory Operations

Primary goalPrimary goal
 Don't overload servers!

ApproachApproach
 Server stores directory as hash table on disk

 Client fetches entire directory as if a file

 Client parses hash table

 Directory maps name to fid

 Client caches directory (indefinitely, across reboots)

 Server load reduced

15-410, F’1932

AFS access pattern

open(“/afs/cs.cmu.edu/service/systypes”)open(“/afs/cs.cmu.edu/service/systypes”)
 VFS layer hands off “/afs” to AFS client module

 Client maps cs.cmu.edu to pt & vldb servers

 Client authenticates to pt server

 Client volume-locates root.cell volume

 Client fetches “/” directory

 Client fetches “service” directory

 Client fetches “systypes” file

15-410, F’1933

AFS access pattern

open(“/afs/cs.cmu.edu/service/newCSDB”)open(“/afs/cs.cmu.edu/service/newCSDB”)
 VFS layer hands off “/afs” to AFS client module

 Client fetches “newCSDB” file

open(“/afs/cs.cmu.edu/service/systypes”)open(“/afs/cs.cmu.edu/service/systypes”)
 Assume

 File is in cache

 Server hasn't broken callback

 Callback hasn't expired

 Client can read file with no server interaction

15-410, F’1934

AFS access pattern

Data transfer is by Data transfer is by chunkschunks
 Minimally 64 KB

 May be whole-file

WriteWritebackback cache cache
 AFSv2 stored entire file back atomically

 AFSv3 stores “chunks” back to server

 When cache overflows

 On last user close()

15-410, F’1935

AFS access pattern

Is writeback crazy?Is writeback crazy?
 Write conflicts “assumed rare”

 Who needs to see a half-written file?

 Locking can be used (often isn't)

15-410, F’1936

NFS v2/v3 “rough edges”

LockingLocking
 Inherently stateful

 lock must persist across client calls

» lock(), read(), write(), unlock()

 “Separate service”

 Handled by same server

 Horrible things happen on server crash

 Horrible things happen on client crash

15-410, F’1937

NFS v2/v3 “rough edges”

Some operations not really idempotentSome operations not really idempotent
 unlink(file) returns “ok” once, then “no such file”

 server caches “a few” client requests

CachingCaching
 No real consistency guarantees

 Clients typically cache attributes, data “for a while”

 No way to know when they're wrong

15-410, F’1938

NFS v2/v3 “rough edges”

Large NFS installations are brittleLarge NFS installations are brittle
 Everybody must agree on many mount points

 Hard to load-balance files among servers

 No volumes

 No atomic moves

Cross-realm NFS access basically nonexistentCross-realm NFS access basically nonexistent
 No good way to map uid#47 from an unknown host

15-410, F’1939

AFS “rough edges”

LockingLocking
 Server refuses to keep a waiting-client list

 Client cache manager refuses to poll server

 Result

 Lock returns “locked” or “try again later”

 User program must invent polling strategy

Chunk-based I/OChunk-based I/O
 No real consistency guarantees

 close() failures are surprising to many programs

15-410, F’1940

AFS “rough edges”

ACLs apply to directoriesACLs apply to directories
 “Makes sense” if files in a directory logically should be

protected the same way

 Not always true

 Confuses users

New directories inherit ACL from parentNew directories inherit ACL from parent
 Easy to expose a whole tree accidentally

 What else to do?

 No good solution known

 (Though complex solutions exist...)

15-410, F’1941

AFS “rough edges”

Small AFS installations are punitiveSmall AFS installations are punitive
 Step 1: Install Kerberos

 2-3 servers

 Inside locked boxes!

 Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb)

 Step 3: Explain Kerberos to your users

 Ticket expiration!

 Step 4: Explain ACLs to your users

15-410, F’1942

Summary - NFSv2

Workgroup network file serviceWorkgroup network file service

Any Unix machine can be a server (easily)Any Unix machine can be a server (easily)

Machines can be both client & serverMachines can be both client & server
 My files on my disk, your files on your disk

 Everybody in group can access all files

Serious trust, scaling problemsSerious trust, scaling problems

““Stateless file server” model only partial successStateless file server” model only partial success

15-410, F’1943

Summary – AFS

Worldwide file systemWorldwide file system

Good security, scalingGood security, scaling

Global namespaceGlobal namespace

““Professional” server infrastructure per cellProfessional” server infrastructure per cell
 Don't try this at home

 Only ~200 public AFS cells as of 2016-03-21

 9 are cmu.edu, ~15 are in Pittsburgh

 These numbers are basically static since 2002 (!!!)

““No write conflict” model only partial successNo write conflict” model only partial success

15-410, F’1944

NFSv4 Changes

Genuine authenticationGenuine authentication
 Each client RPC is authenticated via Kerberos

ACL'sACL's
 “Like NTFS”, “Like POSIX”

 Include allow/deny, plus audit/alarm

 “Create file” is a separate ability from “create directory'

 Can specify different access for “network user” and
“dialup user” (???)

 NFSv4 ACL's don't match any OS native ACL format

 Server can approximate or reject any ACL you try to set

15-410, F’1945

NFSv4 Changes

Compound RPCCompound RPC
 open()+lock()+read()+write()+unlock()+close() in one

packet

 Can look up multiple pathname components

 Greatly speeds up performance on long-latency wide-area
networks

““Delegations” of file data & metadata to clientsDelegations” of file data & metadata to clients
 More general than AFS callbacks

Better locking architectureBetter locking architecture
 Locks can persist across crashes

 Requires tricky “client identification” semantics

15-410, F’1946

NFSv4 Changes

Other additionsOther additions
 Replication of mostly-read-only trees

 “Redirect” support for file relocation

 Tricky pathname-rewrite step

NFSv4.2 in progressNFSv4.2 in progress
 Multi-realm operation

 Parallel NFS

15-410, F’1947

Conclusions

NFS v2NFS v2
 Goals limited to near-term achievability

AFSAFS
 Available-now large cells and cross-realm operation

NFS v4NFS v4
 Evolution may be a better strategy than revolution!

15-410, F’1948

Further Reading

NFSNFS
 RFC 1094 for v2 (3/1989)

 RFC 1813 for v3 (6/1995)

 RFC 3530 for v4 (4/2003, not yet universally available)

15-410, F’1949

Further Reading

AFSAFS
 “The ITC Distributed File System: Principles and Design”,

Proceedings of the 10th ACM Symposium on Operating
System Principles, Dec. 1985, pp. 35-50.

 “Scale and Performance in a Distributed File System”,
ACM Transactions on Computer Systems, Vol. 6, No. 1,
Feb. 1988, pp. 51-81.

 IBM AFS User Guide, version 36

 http://www.cs.cmu.edu/~help/afs/index.html

