42-705/505: Variational Image Processing Assignment 1: FEM and variational methods review Due 27 September 2004

Consider a 2D image of dimension $l \times l$ with given intensity $u_0(x, y)$. We would like to find a smoother image $u(x, y)$ by minimizing the energy

$$
\frac{1}{2}\int_{\Omega} k(x,y) \nabla u \cdot \nabla u \, dx \, dy + \frac{1}{2}\int_{\Omega} (u - u_0)^2 \, dx \, dy
$$

with boundary condition $u = 0$ on all four sides. Here Ω represents the interior of the image. The parameter (x, y) is a "diffusion" coefficient whose magnitude controls how much smoothing occurs. We can easily $\alpha(x, y)$ is a distribution of the smoothing by permitting k to vary in (x, y) .

1. Using variational calculus, derive the weak and strong forms of the boundary value problem governing this problem. The following Green's identity will prove useful: for scalar functions $a(x, y)$, $u(x, y)$, and $v(x, y)$,

$$
\int_{\Omega} v \nabla \cdot (a \nabla u) \ dx \, dy = - \int_{\Omega} a \nabla u \cdot \nabla v \, dx \, dy + \int_{\Gamma} v a \nabla u \cdot \mathbf{n} \, ds,
$$

where n is the outward unit normal to the boundary Γ , and s is the arc length.

2. Application of the Ritz method to this problem, using the finite element approximation

$$
u_h(x,y) = \sum_{i=1}^N u_i \phi_i(x,y),
$$

produces a linear algebraic system of the form $Ku = f$. Give expressions for typical elements K_{ij} and f_i of this system. Show that K is symmetric positive semidefinite, by showing that $u^T K u \geq 0$ for $u \neq 0$.

3. Prove that the Ritz method minimizes the square of the error measured in the energy norm for this problem; i.e. if $e(x, y) \equiv u - u_h$ is the error, then prove that the Ritz method minimizes

$$
\|e(x,y)\|_E^2 = \frac{1}{2} \int_{\Omega} \left\{ k \nabla e \cdot \nabla e + e^2 \right\} dx dy.
$$

- 4. Show that the Galerkin method produces the same algebraic system $K\mathbf{u} = \mathbf{f}$ as does the Ritz method (and therefore the two methods produce identical approximations).
- 5. Use Sundance to compute finite element solutions for the case $k = 1$, $l = 4$, with given image u_0 given by

$$
u_0(x,y) = \frac{4\sigma - x^2 - y^2 + 4\sigma^2}{16\pi\sigma^3} e^{-(x^2 + y^2)/(16\pi\sigma^2)} - 2 < (x,y) < 2.
$$

Here, the exact solution $u(x, y)$ is just a Gaussian with variance $\sigma > 0$,

$$
u(x,y) = \frac{1}{4\pi\sigma} e^{-(x^2+y^2)/(4\sigma)} - 2 < (x,y) < 2.
$$

Verify the asymptotic convergence rate estimates in the L^2 and H^1 norms for $\sigma = 0.2$ (a "smooth" Gaussian). Use both linear and quadratic elements, and tabulate the mesh size against the error in each norm. Does the error decrease as expected when you refine the mesh? Repeat for $\sigma = 0.05$ (a "rough" Gaussian). How does this case differ from the smooth Gaussian?