24-505/705: Variational Image Processing Assignment 4: Level Set Segmentation Due 29 November 2004

In this assignment we apply the level-set-based *active contours without edges* method of Chan and Vese to segment a brain scan image. We represent the the segmenting curve as the zero isocontour of the level set function $\phi(\mathbf{x})$, where $\phi > 0$ inside the contour and $\phi < 0$ outside. Associated with $\phi(\mathbf{x})$ is a Heaviside function $H(\phi)$, where H = 1 inside the zero isocontour and H = 0 outside. We work with a smooth approximation to the Heaviside, $H_{\alpha}(\phi)$, which is represented according to the expression

$$H_{\alpha}(\phi) := 0.5[1 + \tanh(\alpha\phi)],$$

where the larger α is, the sharper the transition from 0 to 1. Given an image u_0 that we wish to segment into two regions of relatively constant intensity, the active contours without edges model seeks to minimize the following "energy:"

$$\mathcal{F} := \lambda_1 \int_{\Omega} H_{\alpha}(\phi) (u_0 - c_1(\phi))^2 \, d\boldsymbol{x} + \lambda_2 \int_{\Omega} (1 - H_{\alpha}(\phi)) (u_0 - c_2(\phi))^2 \, d\boldsymbol{x} + \mu \int_{\Omega} \delta_{\alpha}(\phi)) |\nabla \phi| \, d\boldsymbol{x} + \nu \int_{\Omega} H_{\alpha}(\phi) \, d\boldsymbol{x} + \mu \int_{\Omega} h_{\alpha}($$

where $\delta_{\alpha}(\phi)$ is a smooth approximation to the delta function given by $\frac{\partial H(\phi)}{\partial \phi}$, and c_1 and c_2 are average intensities of u_0 inside and outside the zero isocontour, respectively, i.e.

$$c_1(\phi) = \frac{\int_{\Omega} u_0 H_{\alpha}(\phi) \, d\boldsymbol{x}}{\int_{\Omega} H_{\alpha}(\phi) \, d\boldsymbol{x}},$$

$$c_2(\phi) = \frac{\int_{\Omega} u_0 (1 - H_{\alpha}(\phi)) \, d\boldsymbol{x}}{\int_{\Omega} (1 - H_{\alpha}(\phi)) \, d\boldsymbol{x}}$$

- 1. Using the calculus of variations, derive the weak and strong form of the first order optimality condition. (Denote the variation of ϕ by $\hat{\phi}$.)
- 2. Show that the first order condition provides insufficient information to determine $\phi(x)$.
- 3. Consider regularization by a Tikhonov functional so that the regularized energy is given by

$$\mathcal{F}_R := \mathcal{F} + \frac{\varepsilon}{2} \int_{\Omega} \nabla \phi \cdot \nabla \phi \, d\boldsymbol{x},$$

with homogeneous Neumann boundary conditions on ϕ .

- 4. Derive the weak form of an approximate Newton method for ϕ , where the Hessian is approximated by dropping
 - terms that involve the variations of c_1 and c_2 ,
 - terms that involve the first and second derivatives of $\delta_{\alpha}(\phi)$, and
 - terms that are close to zero at the optimum (i.e. the misfit term between u_0 and the c_i).

(Denote the Newton increment of ϕ by $\tilde{\phi}$.) Show that for $\varepsilon > 0$, the Hessian operator is positive definite.

5. Implement the approximate Newton method in Sundance and apply it to segment the 256×256 brain scan image (brain.png, brain.pnm) in the images directory of the class website. Use $\lambda_1 = \lambda_2 = 1$, $\nu = 0$, and experiment with μ to produce a satisfactory segmentation of the tumor.