
Profile-Driven Energy Reduction in Network-on-Chips

Feihui Li, Guangyu Chen, Mahmut Kandemir
Department of computer Science and Engineering

The Pennsylvania State University, USA
{feli,gchen,kandemir}@cse.psu.edu

Ibrahim Kolcu
Computation Department

University of Manchester, UK
ikolcu@umist.ac.uk

Abstract
Reducing energy consumption of a Network-on-Chip (NoC) is
a critical design goal, especially for power-constrained embed-
ded systems. In response, prior research has proposed several
circuit/architectural level mechanisms to reduce NoC power con-
sumption. This paper considers the problem from a different per-
spective and demonstrates that compiler analysis can be very help-
ful for enhancing the effectiveness of a hardware-based link power
management mechanism by increasing the duration of communi-
cation links’ idle periods. The proposed profile-based approach
achieves its goal by maximizing the communication link reuse
through compiler-directed, static message re-routing. That is, it
clusters the required data communications into a small set of com-
munication links at any given time, which increases the idle periods
for the remaining communication links in the network. This helps
hardware shut down more communication links and their corre-
sponding buffers to reduce leakage power. The current experimen-
tal evaluation, with twelve data-intensive embedded applications,
shows that the proposed profile-driven compiler approach reduces
leakage energy by more than 35% (on average) as compared to a
pure hardware-based link power management scheme.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—compilers; C.2.0 [Computer-Communication
Networks]: General

General Terms Algorithms, Management, Experimentation

Keywords Network-on-Chip, power, compiler, routing

1. Introduction
The increasing complexity of communication patterns in embedded
applications, which are parallelized over multiple processing units,
creates difficulty for continued use of traditional bus-based on-chip
communication techniques. Network-on-chip (NoC) architectures
are rapidly replacing dedicated interconnects and buses in com-
plex System-on-Chip (SoC) architectures. An NoC can connect and
manage communications among a variety of design elements and
Intellectual Property (IP) blocks required by complex SoCs. Prior
research of NoCs mainly focused on circuit/architectural level tech-
niques [2, 5, 31] and task mapping related issues [1, 13].

While, in principle, communication strategies similar to those
currently used for large off-chip networks can apply at the chip

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

level, increasing on-chip power consumption demands a power-
aware design and an optimization process. Recent research shows
that using voltage/frequency scaling on communication links [24]
and shutting down the idle links [27] can significantly reduce NoC
power consumption. Such techniques, while very effective in re-
ducing power consumption in certain cases, work best when com-
munication links have long idle periods, which allow compensation
for performance/power overheads due to switching between volt-
age levels and between link shut-down/turn-on states. Specifically,
long idle periods are preferable from the viewpoint of maximizing
power savings through link shutdown.

Motivated by this preference, this paper proposes and evalu-
ates aprofile-driven compiler optimizationfor increasing the length
of idle periods of communication links for a two-dimensional,
on-chip, mesh network. The proposed compiler-directed approach
achieves its goal by maximizing communication link reuse. That
is, this approach clusters the required data communications into a
small set of links at any given time, increasing the idle periods for
the remaining communication links in the network. Clearly, this
scheme needs to occur in a performance-sensitive manner. There-
fore the goal is to reduce network energy consumption as much
as possible without causing extra link contention and significantly
degrading network performance.

The targeted application domain is array/loop-intensive embed-
ded programs, and the targeted NoC is a two-dimensional mesh
used by a single application at a time. Note that a large frac-
tion of embedded NoCs typically execute a single application and
use static message routing for reasons such as energy efficiency
and buffer space minimization [13]. This paper proposes a profile-
driven static message routing scheme that maximizes link reuse
between different execution states of a given application. Our ap-
proach makes use of a novel data structure called the communica-
tion graph (which captures different network states during applica-
tion execution) and a new abstraction: the “link signature” (which
captures link utilization caused by messages in a given network
state). We implement our approach and test it using twelve data-
intensive embedded applications. Analysis of the test results show
that the proposed profile-driven compiler approach reduces leak-
age energy by more than 35% on average, as compared to a pure
hardware-based link power management scheme.

The remainder of this paper is organized as follows. Section 2
introduces our on-chip mesh architecture and hardware support for
the compiler-directed message routing. Section 3 explains how link
signatures and the communication graph derive from an automated
compiler analysis and describes the link reuse optimization ap-
proach. Section 4 presents the experimental results from our im-
plementation. Sections 5 and 6 describe related work and provide
concluding remarks, respectively.

394

2. Architectural Model
2.1 Network Abstraction

Our research focuses on a mesh-based NoC architecture, whose ab-
stract view appears in Figure 1. Each node in the mesh has a simple,
single-issued, embedded core with a small amount of local mem-
ory (32KB in our experiments). Each node is connected to its local
switch through a network interface (NI) and thus communicates
with other nodes through switches and communication links. Inter-
processor communication is done via message passing.

Figure 1. Mesh-based NoC architecture (S: switch; NI: network
interface).

The internal structure of a switch is shown in Figure 2. Each
switch has an interface with its local processing unit. It also has four
input/output ports that interface with four neighboring switches.
Input/output buffers in a switch store the packets in transmission.
A cross-bar decides to which output port a packet is to be sent.
The default routing algorithm used by the switches is static X-Y
routing [9], which passes each packet first exclusively in the X-
dimension and then completely in the Y-dimension until reaching
the destination node.

Figure 2. Switch structure.

Based on prior research of power-aware networks [15, 27],
we employ a hardware-controlled link shutdown scheme. Each
communication link in the network, as well as its corresponding
buffers, can be turned off when they remain idle for a certain period
of time. The powered-off components re-activate on demand, i.e.,
they turn on only when needed.

2.2 Hardware Support for Compiler-Directed
Message Routing

Our goal is to determine the most appropriate routing for each mes-
sage at compilation time thereby allowing maximized link reuse
across different messages. Thus, the compiler must have a way of
providing routing information, which may be different from the de-
fault X-Y routing, to each message. We propose to let the compiler
attach routing information to each message-send operation in the

code, requiring the packets of all the messages issued by a message-
send operation to follow the same route (the message-send opera-
tions considered here are source level communication commands
such as MPISend in the MPI Library [29]). Please note that the
selection of the communication library to use is orthogonal to the
focus of this paper.

To support the compiler-directed message routing, we extend
the switch design to handle two types of routing schemes:de-
fault X-Y routingandcompiler-directed routing. The header of each
packet contains a flag bit, indicating which routing mechanism to
use for a given packet (0: X-Y routing; 1: compiler-directed rout-
ing). A packet using the default X-Y routing has the identification
(ID) of the destination node in its header, as shown in the upper part
of Figure 3. When a switch receives such a packet, it forwards the
packet according to the X-Y routing algorithm.

Figure 3. Fields in the header of a packet (Top: default X-Y
routing; Bottom: compiler-directed routing).

Table 1. Routing decisions based on orientation and routing
command bits (N: North; S: South; W: West; E: East).

Orientation 00 00 01 01 10 10 11 11
Routing command 0 1 0 1 0 1 0 1
Routing decision N E N W S E S W

On the other hand, the header of a packet that employs the
compiler-directed routing contains three fields (see the lower part
of Figure 3): the hop counter (4 bits), the orientation (2 bits), and
the routing command sequence (13 bits). Assuming that node,Pi,
sends packet,p, to node,Pj , for each switch,Sk, on the path of
this packet, a corresponding bit in the routing command sequence
of the packet tells the switch to which output port to forward this
packet. The meaning of a routing command bit, however, is inter-
preted along with the value of the orientation field. This means
that the compiler can only choose an alternate path from among
the set of possibleshortest paths. Once the orientation of a path
is known (Northwestern: 01; Southwestern: 11; Northeastern: 00;
and Southeastern: 10), only a single bit of the routing command,
indicating the dimension (X: 1; Y: 0), can determine the routing de-
cision (North, South, West, or East). Table 1 provides the meaning
of routing commands for different values of the orientation field.
The node sending a given packet sets the value of the hop counter
of that packet. As the packet moves forward from one switch to an-
other, the hop counter number decreases by one. When the counter
value becomes zero, the packet has arrived at its destination. Due
to the limited number of bits available in a packet header in the
current implementation, the compiler-directed routing mechanism
is not applicable for a packet whose source and destination nodes
are more than 13 hops apart. For such a packet, the default X-Y
routing mechanism applies.

3. Optimizing Link Reuse
A high level view of our compiler-based approach appears in Fig-
ure 4. This approach profiles the parallel application code to be
optimized and builds a communication graph, which captures the
communication pattern of the entire parallel program (elaboration
of the concepts of link signature and communication graph appears

395

later in this section). Given a communication graph, a link reuse
optimizer statically re-routes the pre-determined message routing
paths to increase link reuse. The output of the link reuse opti-
mizer is a modified communication graph. Subsequently, the code
rewriter module annotates each message-send operation in the ap-
plication code with the determined message routing information
and generates an optimized parallel code.

Figure 4. Compiler-directed link reuse optimization scheme. Each
vertex of the communication graph captures a network state.

3.1 Network State and Link Signature

Assume that a parallel program to be executed on the mesh-based
NoC architecture consists ofn parallel threads,P1,P2, ...,Pn, and
threadPp is scheduled to run on thepth mesh node. These threads
send messages to each other using communication commands
(send operations). We denote the set of communication commands
in threadPp using Cp = {M1,p,M2,p, ...,Mk,p, ...,Mq,p},
whereq is the total number of communication commands in the
program code of threadPp andMk,p is thekth communication
command in the code ofPp. For this study, all the messages sent
by a givenMk,p follow the same route in the NoC. At a given
point in execution, multiple messages may be undergoing trans-
mission on the mesh. Representing the network state using a set of
message-send operations,Si, is:

Si = {Mk,p | A message sent byMk,p is in transmission over

the mesh}.
S0 = φ represents a state in which no message is in transmission.

Given a specific network state, a further determination of link
utilization at this state is necessary. Thelink utilization vector
(LUV) for a given send operation,Mk,p, is a vector~uk,p, the
jth element of which gives the number of packets sent byMk,p

and transferred through thejth communication link of the mesh.
Thus, alink signature(LS),~si, to represent the link utilization at a
network stateSi, is:

~si =
X

Mk,p∈Si

~uk,p,

where
P

denotes element-wise vector addition operator.
Given a vector,~w (which can be either an LUV or an LS), func-

tion θ(~w) returns the set of links used by the message(s) captured
by ~w. Figure 5 gives an example link signature calculation. The net-
work stateS1 = {M1,0,M1,1,M1,2} in this example indicates
a gather type of communication. Three concurrent 20-packet mes-
sages,m1,0, m1,1 andm1,2, are sent by commandsM1,0, M1,1,
andM1,2, respectively, as shown in Figure 5(a). The first task is
to obtain the LUVs for the corresponding send operations and then
add them to compute the corresponding LS for this state, as shown
in Figure 5(b). Applying functionθ to this link signature, we obtain
θ(~s1) = {l0,1, l2,3, l1,3}, which means that this state has only three
links in use. From the resulting signature, one can also see that link
l1,3 has the highest communication load (40 packets).

(a) A gather type of communication in a two-by-two mesh (Target node:
P3).

Links: l0,1 l1,0 l2,3 l3,2 l0,2 l2,0 l1,3 l3,1

~u1,0: (20 0 0 0 0 0 20 0)
~u1,1: (0 0 0 0 0 0 20 0)
~u1,2: (0 0 20 0 0 0 0 0)
~s1: (20 0 20 0 0 0 40 0)

(b) Link utilization vectors (~u1,0, ~u1,1, and~u1,2) and link signature (~s1)
for the scenario in (a) (assuming all messages have a size of 20 packets).

Figure 5. A link signature calculation example.

3.2 Communication Graph

The network state changes during the course of execution. More
specifically, the network transitions from a state,Si, to another
state,Sj , in two situations:

• A new message is sent by communication command,Mk,p. In
this case,Sj = Si ∪ {Mk,p}.

• A message sent by communication commandMk,p arrives at
its destination node. In this case,Sj = Si − {Mk,p}.

A communication graph(CG) captures the communication be-
havior of a program. A communication graph is an undirected
graph, in which each vertex corresponds to a network state and,
each edge(Si, Sj) indicates the transition between states,Si and
Sj . Wi,j , the weight attached to edge,(Si, Sj), gives the number
of transitions taking place between states,Si and Sj , during the
execution of this program.

We useprofiling to build the CG of a parallel program. Specif-
ically, we instrument the target program to notify a profiler each
time a node sends a message or when a message arrives its desti-
nation node. The profiler keeps track of the current network state,
Si. When the profiler receives a notification from the instrumented
program, it computes the new state,Sj , and increases the value of
Wi,j , which represents the number of transitions betweenSi and
Sj . After the program completes its execution, we construct its CG
based on the computed network states, the state transitions, and the
values ofWi,j . Figure 6(a) illustrates an example communication
graph.

(a) A communication
graph.

(b) Processing order
by Scheme I.

(c) Processing order
by Scheme II.

Figure 6. Two different approaches to traverse a CG (a shaded
vertex at stepk indicates that the corresponding link signature is
not modified at this step).

396

3.3 Maximizing Link Reuse

Based on the previous definitions, we can re-express the problem
of increasing link reuse as one of maximizing link reuse between
adjacent vertices in a communication graph. That is, when going
from one state to another at runtime, the desire is to reuse the
same set of links as much as possible. Each vertex in a CG has
a default link signature, obtained using the default X-Y routing
for messages sent by the communication commands in that vertex.
The compiler’s task is to re-assign link signatures to those vertices,
which will maximize communication link reuse.

3.3.1 Traversing a Communication Graph

It is necessary to determine an order in which we traverse network
states to assign them new link signatures, as assigning a signature
to a given vertex (network state) will affect the selection of the
signatures for its neighbors in the CG. At least two different ways
of traversing a CG exist. The first approach starts with the edge
with the largest weight and performs the signature re-assignment to
the associated vertices. After that, this approach considers the edge
with the next largest weight among the edges that are incident on
the selected vertices. Since one of the vertices of the edge under
consideration has an assigned signature, signature assignment is
for the other vertex only. This step repeats until all the vertices
are processed. This approach, referred to asScheme I, expands the
selected set of edges at each step by considering only the neighbors.
The second approach, referred to asScheme II, starts the same way
as Scheme I. However, after selecting the edge with the largest
weight and assigning new signatures to corresponding vertices,
the next edge selection considers all the remaining edges (i.e., not
just those that are incident on the previously selected vertices).
To illustrate the differences between Scheme I and Scheme II, let
us consider the example CG shown in Figure 6(a). The pairs of
vertices considered by Scheme I and Scheme II at each step (for
signature re-assignment) appear in Figure 6(b) and Figure 6(c),
respectively. Figure 7(a) and Figure 7(b) provide the pseudo-codes
for the compiler algorithms that implement Scheme I and Scheme
II, respectively.

3.3.2 Optimizing Link Reuse Between Two Adjacent
Network States

1) Routing Flexibility. Re-routing (the messages sent by) the com-
munication commands can achieve improvement in communica-
tion link reuse. In the present scheme, only theshortest pathsare
considered for re-routing messages since this typically causes less
energy consumption than using longer paths. Even with this restric-
tion, in many cases a certain re-routing flexibility is available. Con-
sider a two-dimensional mesh where a message,m, is to be sent
from a source node, (xs, ys), to a destination node, (xd, yd). If
m = |xd − xs| andn = |yd − ys|, this message hasCm

m+n possi-
ble, unique, shortest paths. Recall from Section 3.1 that the defined
link utilization vector represents the path taken by a message. Now,
a set of alternate link utilization vectors(ALUV), Ai,p, can repre-
sent all the alternate (shortest) paths available to a message sent by
the communication command,Mi,p. Therefore, re-routing a mes-
sage can be thought of as the replacement of the current LUV for
an associatedMi,p, with a new LUV selected from the correspond-
ing ALUV set. The number of alternate link utilization vectors in
an ALUV set (i.e.,|Ai,p|) thus represents therouting flexibility for
(the messages sent by) communication command,Mi,p.

2) Problem Formulation. Formulating the problem of optimiz-
ing the communication link reuse between two neighboring vertices
in a CG focuses on two vertices,Sa andSb, as shown in Figure 8.
Each communication command, e.g.,Ma3,p3 in stateSa, has a set
of alternate link utilization vectors, which represent the alternate,
shortest paths for the corresponding message. A single commu-
nication command is likely to appear in multiple network states.

Input:
A communication graphCG(V, E, W);

Output:
~ui,p for eachMi,p in the program;

P — the set of network states that have been processed;
R — the set of communication commands whose LUVs

have been determined;
C — the set of candidate edges;

P = φ; R = φ; C = φ;
while(P 6= V) {

if(C = φ)
C = {(Sx, Sy)} if Wx,y is maximum;

select(Si, Sj) ∈ C with maximumWi,j ;
call reroute(Si , Sj , R);
P = P ∪ {Si, Sj};

// statesSi andSj have been processed.
R = R ∪ Si ∪ Sj ;

// the LUVs of the communication commands
// in Si andSj have been determined.

C′ = {(Sa, Sb)|Sa ∈ P ∧ Sb ∈ (V − P)};
C = (C − {(Si, Sj)}) ∪ C′;

}

(a) Scheme I.

Input:
A communication graphCG(V, E, W);

Output:
~ui,p for eachMi,p in the program;

P — the set of network states that have been processed;
R — the set of communication commands whose LUVs

have been determined;
C — the set of candidate edges;

P = φ; R = φ; C = E;
while(P 6= V) {

select a(Si, Sj) ∈ C if Wi,j is maximum;
call reroute(Si , Sj , R);
P = P ∪ {Si, Sj};

// statesSi andSj have been processed.
R = R ∪ Si ∪ Sj ;

// the LUVs of the communication commands
// in Si andSj have been determined.

C = C − {(Si, Sj)};
}

(b) Scheme II.

Figure 7. Pseudo codes for our two CG traversing schemes
(Scheme I and Scheme II).

However, we can change the associated routing only once (i.e., all
the messages sent by it are always transferred through the same
path). Therefore, when optimizing states,Sa andSb, the possibil-
ity exists that some communication commands have already been
assigned new routes during the previous steps (such asMa4,p4 and
Ma5,p5 in state,Sa, andMb3,p3 in state,Sb) and these routes can-
not be further changed. The goal is to choose a new LUV for each
send operation (except those already assigned new LUVs) inSa

andSb minimizing the number of unique links used inSa andSb

(i.e., maximizing the link reuse).
Selecting the new utilization vectors should not degrade the per-

formance of the default routing scheme. However, selecting alter-
nate re-routings can increase the network contention. Therefore,
some sort ofperformance constraintshould be introduced for se-
lecting the re-routings. In one network state, the communication
link with the highest load often heavily influences the latency of
transmitting messages. The link with the highest load corresponds

397

Figure 8. Link reuse optimization between two network states,Sa andSb.

to the largest entry in the link signature associated with a given
state. The higher the value of the largest entry, the more likely
there will be severe link contention. Therefore, in optimizing link
reuse, and in order to avoid degrading network latency, increasing
the value of the largest entry in any original link signature is un-
desirable (although the largest value may be permitted to shift to
another link). For example, given the default link signature (10, 40,
10, 10, 0, 0, 0, 0) of a network state, from the performance per-
spective, an alternate signature such as (10, 50, 0, 10, 0, 0, 0, 0) is
inexpedient. However, for another alternate signature (40, 20, 10, 0,
0, 0, 0, 0), the compiler has difficulty judging its impact on latency
as compared to the default, (10, 40, 10, 10, 0, 0, 0, 0). The cur-
rent implementation accepts this second alternate signature. Since
the proposed approach is built within a compiler in a modular fash-
ion, it is very flexible. That is, if desired, one can easily explore
more strict performance constraints. We want to emphasize, how-
ever, that judging the latency behavior of a network state based on
its signature at compile time is a very difficult problem in general.
This is the reason for adopting a simple compile-time heuristic,
based on the assumption that the link with the largest load typically
forms the main latency bottleneck.

3) Heuristic. We present a heuristic for calculating the routings
for (the messages sent by) the communication commands. The
pseudo code for our heuristic is given in Figure 9.

First, for eachMi,p unassigned with a new routing in network
statesSa andSb, we calculate its LUV and ALUV. Also, we obtain
the link signatures for states,Sa andSb. Based on the signatures,
we computenum links, the total number of the links used inSa

andSb combined. The goal is to reduce the value of this variable
as much as possible under performance constraints. We sort the
communication commands in these two states into a sequence with
ascending routing flexibilities (represented by|Ai,p|). We start with
the communication command that has the lowest routing flexibility
and assign a proper route to it. The reason for starting with the
command with the lowest flexibility is that deciding the routing
of this command early in the optimization process is ultimately
more beneficial. Otherwise, due to its limited routing flexibility,
difficulties may arise for assigning a new LUV to it after many
other send operations have their routing paths fixed. We assign the
appropriate routes to the communication commands, one-by-one,
until processing all commands inSa andSb is complete.

The method for choosing a route for a communication com-
mandMi,p (recall that all the messages sent by the sameMi,p

follow the same path in the NoC) requires some explanation. With-
out losing generality, assuming that the send operation to be re-
routed belongs to stateSa, the heuristic selects a new LUV for op-
erationMi,p by considering all the re-routing options captured in
Ai,p. For each alternate re-routing, the heuristic algorithm checks
whether the performance constraint is satisfied with respect to state
Sa. If the performance constraint is met, the new link signature is

Input:
Sa, Sb — two network states;
R — the set of communication commands whose LUVs

have been determined
Output:

~ui,p — LUV for eachMi,p ∈ ((Sa ∪ Sb) − R).

// determine the LUV for each communication command
// in statesSa andSb if it has not been determined yet.
procedure reroute(Sa , Sb, R) {

for eachMi,p ∈ (Sa ∪ Sb − R) {
calculate~ui,p, the LUV ofMi,p, based on X-Y routing;
calculateAi,p, the ALUV of Mi,p;
calculate~sa, the link signature of stateSa;
calculate~sb, the link signature of stateSb;
num links = |θ(~sa) ∪ θ(~sb)|;
if(θ(~sa) ⊆ θ(~sb) ∨ θ(~sb) ⊆ θ(~sa))

return;
sort allMi,p ∈ (Sa ∪ Sb − R) by the routing flexibility|Ai,p|
for eachMi,p ∈ (Sa ∪ Sb − R){

for each~v ∈ Ai,p {
if Mi,p ∈ Sa ∧Mi,p ∈ Sb {

calculate~sa new by using~v as LUV ofMi,p

calculate~sb new by using~v as LUV ofMi,p

if(max(~sa new) > max(~sa)) continue;
if(max(~sb new) > max(~sb)) continue;
if(|θ(~sa new) ∪ θ(~sb new)| ≥ num links) continue;
if(|θ(~sa new) ∪ θ(~sb new)| = num links∧

|θ(~sa new) ∩ θ(~sb new)| ≤ |θ(~sa) ∩ θ(~sb)|)
continue;

replace~ui,p with ~v;
~sa = ~sa new ; ~sb = ~sb new;
num links = |θ(~sa) ∪ θ(~sb)|;

} else{
if(Mi,p ∈ Sa) { x = a; y = b; }
else{ x = b; y = a; }
calculate~sx new by using~v as LUV ofMi,p

if max(~sx new) > max(~sx) continue;
if(|θ(~sx new) ∪ θ(~sy)| > num links) continue;
if(|θ(~sx new) ∪ θ(~sy)| = num links∧

|θ(~sx new) ∩ θ(~sy)| ≤ |θ(~sa) ∩ θ(~sb)|)
continue;

replace LUV ofMi,p, i.e.,~ui,p, with ~v;
~sx = ~sx new ;
num links = |θ(~sx) ∪ θ(~sy)|;

}
}

}
}

}
functionmax(~v) {

return the value of the largest entry of~v;
}

Figure 9. Communication link reuse optimization heuristic.

398

computed for stateSa. Subsequently, using this new signature, de-
noted~sa new, and the current signature of stateSb (~sb), the heuristic
re-calculates the total number of links used by the messages inSa

andSb. This total number of links isnum links. Among all the
alternatives in the set,Ai,p, that satisfy the performance constraint,
the heuristic selects the one that leads to the minimumnum links
value. Ifnum links cannot be reduced with any alternate utiliza-
tion vector, the choice is for the alternate LUV that maximizes the
number of links reused by the two states (i.e.,|θ(~sa) ∩ θ(~sb)| is
maximized). The utilization vector for this communication com-
mand is then fixed, and the routing assignment for this command
is complete at this point. Once a communication command is given
a new LUV, this command is not considered again when process-
ing the other vertex-pairs. When all the send operations have been
assigned new routes, the thread codes are annotated with the corre-
sponding LUVs.

The computational complexity of the heuristic isO(N ∗ K ∗
Cm

m+n), whereN is the number of network states,K is the num-
ber of send operations, andCm

m+n represents the largest routing
flexibility in an m × n mesh, as mentioned earlier.

3.4 Example

This section provides an example to illustrate how the link reuse
optimization scheme works. Since the steps traversing a communi-
cation graph are relatively simple, we only present the link reuse
optimization between two adjacent network states. The focus is
on a four-by-four mesh network and two neighboring network
states in a CG:Sa and Sb. The goal is to maximize link reuse
between them, assuming thatSa = {M1,3,M1,7,M1,11}, and
Sb = {M2,3,M2,7}. Figure 10(a) and Figure 10(b) illustrate the
default routings of the messages sent by these communication com-
mands inSa andSb, respectively. We assume that messagemi,j is
sent by the send operationMi,j . For example, messagem2,7 is
sent by the send operation,M2,7, which is the second send op-
eration in the code of threadP7 that runs on mesh node 7. The
target node of this send operation is node 14. We further assume,
for clarity of presentation, the size of each message is 20 packets.
One can calculate the LUV for each send operation and the LS
for each network state, as shown in Figure 10(d), under the default
routings. The ALUV sets for the send operations are also calcu-
lated, although they are not shown here due to space limitations.
However, the routing flexibility, given within the parentheses asso-
ciated with the corresponding message, appears in Figure 10(a) and
Figure 10(b).

The task is to select new LUVs for send operations, with the
assumption that no send operation in these two states has fixed its
LUV in the previous optimization steps (i.e., when processing the
other state pairs). Thus, considering all the operations in the two
states, we start fromM2,3, which has the lowest routing flexibility.
With a flexibility of 1, it has no alternate LUV. Consequently, the
route for this message is easily fixed, as shown in Figure 10(c)
(this example uses the routings of the corresponding messages to
represent the selected LUVs). Next,M1,11 has a routing flexibility
of 2. However, no beneficial alternate LUV for this communication
exists, and the approach maintains its default LUV, as is shown in
Figure 10(e). The next send operation to process isM2,7. Since
using any alternate LUV for it would violate the performance
constraint in stateSb (for example, using either of the two alternate
LUVs, link l7,11 would overload), this operation is also fixed with
its default LUV. This step completes the processing of all the send
operations in stateSb. For each communication command in state,
Sb, our approach decides to employ the default LUV, and the
resulting routings are the same as those in Figure 10(b). Thus, we
do not show the result of step III in Figure 10. In the following
two steps, the heuristic returns beneficial re-routings for operations
M1,7 andM1,3, as illustrated in Figure 10(f) and Figure 10(g),

respectively. Each step reduces the total number of links used in the
two network states (i.e., improves link reuse). Figure 10(g) gives
the final routings for all the communication commands in stateSa.
The modified LUVs and LSs returned by this method are given in
Figure 10(h). Clearly, the total number of links used in statesSa

andSb decreases from 16 to 12.

3.5 Code Rewriter

This component of our approach (see Figure 4) is responsible for
providing a version of the message send operation, which incor-
porates the compiler-determined routing information. The code
fragments shown in Figure 11 correspond to the example in Fig-
ure 10. After applying our algorithm, the default message send
operations,send1,3(12, mi) and send1,7(13, mi), are replaced
with the operations including specific routing information, i.e.,
send1,3(12, mi, P1,3) and send1,7(13, mi, P1,7), respectively.
These versions of send operations assemble message headers by
inserting routing paths according to Figure 3 and Table 1. There-
fore, all the messages sent by operationsend1,3 have the message
header: 10110110001110000000; whereas all the messages sent by
operationsend1,7 have the header: 10100111010000000000. The
other message send operations remain unchanged, i.e., for those
remaining messages, the flags in their message headers are zeros,
and the default X-Y routing determines the routing paths.

L1: for i = iL to iU

{ ...
send1,3(12, mi, P1,3);
...
}

...
L2: for j = jL to jU

{ ...
send2,3(15, mj);
...
}

(a) Code running on node
3.

L1: for i = iL to iU

{ ...
send1,7(13, mi, P1,7);
...
}

...
L2: for j = jL to jU

{ ...
send2,7(14, mj);
...
}

(b) Code running on node
7.

L1: for i = iL to iU

{ ...
send1,11(14, mi);
...
}

...

(c) Code running on node
11.

Figure 11. Code rewriting for the example in Figure 10.

3.6 Handling Deadlocks

An important issue that this scheme must address is how to han-
dle possible deadlocks, as the re-routings change the behavior of
the default X-Y routing scheme, which is a deadlock-free routing
algorithm [6]. Dally and Seitz [6] proved that an acyclic chan-
nel dependency graph is the necessary and sufficient condition for
avoiding deadlocks. Thus, adding a simple deadlock handling pro-
cedure (Figure 12) breaks the possible cycles within the channel de-
pendency graph by changing some messages’ routings. This proce-
dure applies after using the rerouting algorithm in Figure 9. Check-
ing the routing paths within each state of the two network states
in question identifies a cyclic channel waiting. If none exists, the
procedure simply returns, indicating no possibility of deadlock. On
the other hand, if there exists cyclic channel waiting (possible dead-
locks), the deadlock handling procedure reviews all the messages
causing cyclic channel waiting. For each message, the algorithm
checks for an alternate path breaking the cycle in the channel de-
pendency graph and, at the same time, without increasing the num-
ber of links used by the two network states. If such a path exists, it
replaces the original path; if not, the algorithm simply returns.1

An important observation at this point is that, while the pre-
viously explained deadlock handling procedure helps reduce the

1 A better approach would be to search for a path that eliminates the
potential deadlock but does not necessarily use the same number of links.
However, this would make the algorithm much more complex.

399

(a) Network stateSa. (b) Network stateSb. (c) Re-routing step I (stateSb).

Links: l3,2 l2,1 l1,0 l0,4 l4,8 l8,12 l7,6 l6,5 l5,9 l9,13 l11,10 l10,14 l3,7 l7,11 l11,15 l6,10 ...
~u1,3: (20 20 20 20 20 20 0 0 0 0 0 0 0 0 0 0 ...)
~u1,7: (0 0 0 0 0 0 20 20 20 20 0 0 0 0 0 0 ...)
~u1,11: (0 0 0 0 0 0 0 0 0 0 20 20 0 0 0 0 ...)
~sa : (20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 0 ...)

~u2,3: (0 0 0 0 0 0 0 0 0 0 0 0 20 20 20 0 ...)
~u2,7: (0 0 0 0 0 0 20 0 0 0 0 20 0 0 0 20 ...)
~sb: (0 0 0 0 0 0 20 0 0 0 0 20 20 20 20 20 ...)

|θ(~sa) ∪ θ(~sb)| = |{l3,2, l2,1, l1,0, l0,4, l4,8, l8,12, l7,6, l6,5, l5,9, l9,13, l11,10, l10,14, l3,7, l7,11, l11,15, l6,10}| = 16

(d) The link utilization vectors and link signatures using default X-Y routing.~sa and~sb are the signatures for stateSa andSb, respectively. The
total number of links used by the two states is 16. Note that the LUV entries not shown above explicitly are zero.

(e) Re-routing step II (stateSa). (f) Re-routing step IV (stateSa). (g) Re-routing step V (stateSa).

Links: l7,6 l9,13 l11,10 l10,14 l3,7 l7,11 l11,15 l6,10 l10,9 l15,14 l14,13 l13,12 ...
~u′1,3: (0 0 0 0 20 20 20 0 0 20 20 20 ...)
~u′1,7: (20 20 0 0 0 0 0 20 20 0 0 0 ...)
~u′1,11: (0 0 20 20 0 0 0 0 0 0 0 0 ...)
~s′

a: (20 20 20 20 20 20 20 20 20 20 20 20 ...)
~u′2,3: (0 0 0 0 20 20 20 0 0 0 0 0 ...)
~u′2,7: (20 0 0 20 0 0 0 20 0 0 0 0 ...)
~s′

b: (20 0 0 20 20 20 20 20 0 0 0 0 ...)

|θ(~s′
a) ∪ θ(~s′

b)| = |{ l7,6, l9,13, l11,10, l10,14, l3,7, l7,11, l11,15, l6,10, l10,9, l15,14, l14,13, l13,12}| = 12

(h) The link utilization vectors and link signatures after re-routing.~s′a and~s′b are the new signatures determined by our approach for stateSa and
stateSb, respectively. The total number of links being used by the two states is 12. Note that the LUV entries not shown above explicitly are zero.

Figure 10. An example that illustrates how our approach works. (a) and (g) represent the default routings and compiler-determined routings
of network stateSa, respectively. (b) represents the default routings of network stateSb (the compiler does not change the routings ofSb in
this example).

probability of experiencing a deadlock at runtime, it cannot com-
pletely eliminate deadlocks. This is because the rerouting algorithm
is profile driven, and a new input to the application can change the
execution behavior. As a result, a runtime based, deadlock handling
approach is needed. To ensure fully deadlock-free execution, we
use the dynamic, hardware-supported deadlock avoidance rule em-
ployed by the Alpha 21364 network architecture [18]. This rule,
based on a theory proposed by Duato [8], states that a cyclic chan-
nel dependency graph does not lead to deadlocks if packets can
drain via a deadlock-free path. By using virtual channels (separate
buffer queues), logically distinct networks, which include an adap-
tive network and a deadlock-free network, are constructed. In this
approach, for performance reasons, most bandwidths are assigned
to the adaptive network (formed by adaptive virtual channels with
no routing limitation), while the deadlock-free network (formed
by deadlock-free virtual channels with routing restriction) used
to drain deadlocked packets occupies limited bandwidth. Since a
deadlock handling procedure already runs after rerouting (as ex-
plained above), a limited deadlock-free bandwidth is sufficient for

draining the infrequent deadlocks. The important point is that this
dynamic approach does not incur extra cycle costs or energy con-
sumption as long as no deadlocks occur at runtime. When dead-
locks occur, however, draining the stuck messages results in both
extra latency and power consumption (due to leakage).

4. Experiments
4.1 Simulation Environment and Benchmarks

To conduct the experiments, we implemented a flit-level on-chip in-
terconnection network simulator. The network, parametrized sim-
ilar to that in [5, 7], is in a five-by-five configuration. The link
speed is set to 1Gb/sec. Each switch input port has a buffer that
can hold 64 flits; each flit is 128 bits wide (packet size is 16 flits).
The communication links in this network can be shutdown inde-
pendently, using a time-out based mechanism as described in [27].
The time-out counter threshold for the hardware-based scheme is
set to 1.5µsec based on some preliminary analysis. The time taken
to switch a link from the power-down state to the active state is set

400

Input:
Sa, Sb — two network states;
R — the set of communication commands whose LUVs

have been determined
~ui,p — LUV for eachMi,p ∈ (Sa ∪ Sb) decided by

the rerouting algorithm in Figure 9.
Output:

~ui,p — LUV for eachMi,p ∈ ((Sa ∪ Sb) − R).

procedure handledeadlock(){
if (!HasCyclicWait(Sa) ∧ !HasCyclicWait(Sb)) {

return;
} else{

calculate~sa, the link signature of stateSa;
calculate~sb, the link signature of stateSb;
num links = |θ(~sa) ∪ θ(~sb)|;
for eachMi,p ∈ D (D: minimal subset of(Sa ∪ Sb) − R

causing channel cyclic waiting){
calculateAi,p, the ALUV of Mi,p;
for each~v ∈ Ai,p {

calculate~sa new by using~v as LUV ofMi,p

calculate~sb new by using~v as LUV ofMi,p

if(|θ(~sa new) ∪ θ(~sb new)| = num links∧
!HasCyclicWait(Sa) ∧ !HasCyclicWait(Sb))
replace~ui,p with ~v;

}
}

}
}

}

Figure 12. Reducing potential deadlocks.

as 1µsec, and the energy overhead of this switching is assumed to
be 140µJ, based on prior research [5, 27]. This study’s simulator
uses the on-chip, interconnection network power model proposed
by Chen and Peh [5]. When a link is turned off, it consumes zero
leakage energy. The network energy model employed is not a major
contribution of this paper and requires no further elaboration. Un-
der the simulation parameters mentioned earlier, the leakage energy
(which includes the leakage in the links as well as in the switches)
contributes to about 41% of the total network energy consumption
(leakage plus dynamic), on average, under the 65nm process tech-
nology. In order to accurately quantify the performance impact of
this approach, we also connected the network simulator to SIM-
ICS [11]. Each node of the architecture is an 800 MHz, embedded
in-order, CPU with 32KB instruction and data caches.

The compiler component for this approach uses the Paradigm
compiler infrastructure [30]. We modified the original front-end of
the compiler to accept C codes (in addition to Fortran codes). In-
put code is optimized such that, for each loop nest, the outermost
loop that does not carry any loop-carried data dependencies is par-
allelized and the inter-processor communication is hoisted to the
highest loop level possible using message vectorization. This is a
well-known communication optimization. The communication li-
brary used for generating communication calls is MPI [29]. Having
determined the code fragment that will be executed by each pro-
cessor, invoking the approach discussed in this paper follows. This
approach determines the link signatures, builds the communication
graph, and performs message re-routing, as explained earlier. Both
communication graph traversal schemes (Scheme I and Scheme
II), discussed in Section 3.3.1, are implemented. The experimen-
tal methodology includes performing experiments with three dif-
ferent versions for each benchmark. The first version is the one
that employs the default routing, i.e., the X-Y routing and uses
the underlying hardware-based link shutdown scheme, modeled af-
ter the schemes described in [27, 15, 5]. In this implementation,
parameters are selected such that the energy savings achieved by

Figure 13. Link utilization.

link shutdown are maximized without unnecessarily hurting net-
work latency. In the rest of this paper, this scheme with the default
routing and link shutdown hardware is thebase scheme. The other
two schemes evaluated for this study are Scheme I and Scheme
II, as discussed earlier in Section 3.3.1. Both schemes run on top
of the same link shutdown hardware used in the base scheme, and
the main goal in this experimental evaluation is discovering how
much additional energy savingsour compiler-directed re-routing
approach generates over that of the hardware-based link shutdown
approach.

The information about the applications used in this study ap-
pears in Table 2. A common characteristic of these benchmarks
is their array/loop-intensive embedded application nature. The first
five benchmarks are collected from different sources, the next four
from [33] and the last three codes are the only array-based codes
in the MediaBench [16] and MiBench [17] suites. The second col-
umn shows a brief description of each benchmark. The code sizes
of these benchmarks range from 63 to 8,612 C lines, while their
dataset sizes are within the range of 68.9KB-1,866.4KB. The third
and fourth columns present the number of nodes and edges in
the communication graph the proposed approach builds for each
benchmark. The table indicates that the number of nodes is not
excessively large. The fifth column gives the leakage energy con-
sumption in the network under the base scheme, as described ear-
lier. The values within the parentheses show the leakage saving per-
centages achieved by this base scheme over an alternate scheme
that does not perform any network power management. Finally, the
sixth column indicates network latency of the base scheme (that
is, the total number of cycles spent in the network). The values
within parentheses in this column show the percentage degradation
in network latency as compared to a case with no power optimiza-
tion. The fifth and sixth columns show that the base scheme saves
52.2% leakage power on an average, and incurs 8.4% additional
latency over a case with no power optimization.

The energy and performance results presented in the rest of this
section are with respect to the absolute values listed in the fifth and
sixth columns of Table 2, respectively. That is, results are normal-
ized with respect to the corresponding results of the base scheme
that implements the hardware-based link shutdown. We want to
emphasize that the presented performance and energy results in-
clude all extra network overheads incurred by the proposed ap-
proach (e.g., those due to augmented message headers). The in-
crease in compilation time due to our optimization ranged between
89% (3Step-log) and Lame 236% (Lame), including time spent
profiling. Since both profiling and compilation are essentially off-
line activities, these increases are within acceptable range. In none
of the experiments we conducted (even the ones with the different
input sets than those used for profiling), we observed any deadlock.
That is, our static deadlock elimination technique was very effec-
tive in practice.

4.2 Results

Figure 13 presents the average link utilization (the fraction of the
cycles in which the links are used for transferring packets). The

401

Figure 14. Percentage reductions in
leakage energy consumption.

(a) Default routing. (b) Re-routing (Scheme I).

Figure 15. CDF for link idle periods.

Table 2. Benchmarks from experiments and their important char-
acteristics. Energy values are in mJ, and the latency values are in
million cycles.

Benchmark Brief CG Size Network Network
Name Description Node Edge Energy Latency

Morph2 Morphological operations 338 1081 75.5(64.9%) 380.4(8.8%)
Disc Speech/music discriminator 816 2937 99.2(46.3%) 123.6(6.9%)
Jpeg Compression for still images 524 1729 92.7(55.8%) 445.1(10.3%)

Viterbi A graphical Viterbi decoder 622 2239 72.5(32.9%) 150.8(9.8%)
Rasta Speech recognition 498 1424 118.1(50.7%) 219.5(6.2%)

3Step-log Logarithmic search motion est.127 396 15.2(62.4%) 107.4(5.7%)
Full-search Full search motion est. 136 448 13.5(48.0%) 95.6(12.3%)

Hier Hierarchical motion est. 138 503 20.4(56.3%) 151.9(7.3%)
Phods Parallel hierarchical motion est.128 440 16.7(66.6%) 111.3(10.4%)

Epic Image data compression 1144 4516 103.9(30.7%) 420.4(6.1%)
Lame MP3 encoder 2062 7526 80.1(55.0%) 272.1(9.0%)

FFT Fast Fourier transform 416 1747 87.2(55.9%) 253.3(7.4%)

Figure 16. Percentage increases in network cycles and overall
execution time.

average link utilization for the benchmarks varies between 10.6%
and 32.3%, averaging 21.4%. In other words, link utilization is not
very high. The main reason for this is that, as explained earlier,
the applications in our experimental suite are optimized through
several source-level communication optimizations that minimize
inter-processor data communication. That is, the compiler is very
successful in reducing the amount of inter-processor communica-
tion. This, in turn, reduces the average link utilization in the5 × 5
mesh (a network that is not very large).

The next set of results, presented in Figure 14, show the percent-
age reduction in leakage energy consumption when using the pro-
posed approach. Each bar in this bar-chart gives the leakage energy
saving over the base scheme. Each application has two bars, one
for each edge selection scheme discussed in Section 3.3.1: Scheme
I and Scheme II. From these results, the average leakage energy
savings, when applying the compiler-directed message re-routing,

Figure 17. Leakage energy consumptions.

are 37.30% and 39.56% for Scheme I and Scheme II, respectively.
This means that both edge selection schemes are successful in re-
ducing the leakage energy consumption, with neither being clearly
superior. These results clearly show that the compiler-directed link
reuse optimization can improve the behavior of the hardware-based
link shutdown scheme. To explain why message re-routing brings
further savings over the base scheme alone, Figures 15(a) and (b)
present the CDF (cumulative distribution function) curves for the
link idle periods with the base scheme and the compiler-directed
message re-routing approach (Scheme I). An (x,y) point on a given
curve in these graphs indicates that y*100 percent of the total link
idle periods are equal or less than x cycles. One can see from these
plots that the message re-routing increases the link idle periods sig-
nificantly. The resulting increase in idle times, in turn, allows the
hardware-based link shutdown scheme to be used more effectively.

The percentage increases in the network cycles (network la-
tency) and overall execution time over the base scheme are in Fig-
ure 16 (the network latency increases due to the base scheme it-
self appear in the last column of Table 2). From these results, the
average network latency increase with Scheme I and Scheme II
(over the base scheme) are 1.21% and 1.29%, respectively. In other
words, the network overhead brought by the new approach, over the
base scheme, is very small. This overhead is attributable to the link
contention created by the approach during the optimization of the
link signatures. A very small fraction of this increase is also due to
the additional latency imposed by the augmented message headers.
Also observable from Figure 16 is that the average increase in over-
all execution time is less than 0.5% for both Scheme I and Scheme
II.

Figure 17 summarizes the normalized leakage energy consump-
tions with the different schemes. The results are normalized with
respect to a scheme that does not employ any power management.
For each application, the first bar in this graph gives the best (mini-
mum) possible leakage consumption. “Best” in this context means
that a link and the corresponding switch are turned off as soon as
they become idle and turned on (without any penalty) upon the
next request. The second bar for an application gives the normal-
ized leakage consumption from the base scheme. The last two bars

402

Figure 18. Sensitivity to the number of nodes
(Scheme I). The results with Scheme II are simi-
lar.

Figure 19. Sensitivity to the input size (Scheme
I). The results with Scheme II are similar.

on the other hand are for this study’s Scheme I and II. These re-
sults show that the average normalized leakage consumption val-
ues for the best case, the base scheme, Scheme I and Scheme II
are 21.40%, 47.85%, 30.00% and 28.92%, respectively. That is,
the base scheme, Scheme I and Scheme II reduce leakage energy
consumption by 52.15%, 70.00% and 71.08%, respectively. This
means that Scheme I and II save significant amounts of leakage
energy as compared to the base scheme. When considering the dy-
namic energy as well (in addition to leakage), we found that the to-
tal (average) energy savings achieved by the base scheme, Scheme
I and Scheme II are 21.37%, 27.49% and 27.94%, respectively, in-
cluding the impact of augmented message headers. These total en-
ergy savings resulting from the proposed schemes are quite signif-
icant, considering the fact that the best scheme can save, at most,
32.22% of the total network energy.

The graph in Figure 18 plots the leakage energy savings for
Scheme I with different numbers of nodes. The default mesh used
so far in the experiments has 25 (=5×5) nodes. All the curves are
normalized with respect to the base case with a corresponding num-
ber of nodes. The results from Scheme II are very similar to those
presented in Figure 18, so they are omitted. The leakage energy
savings obtained from different mesh sizes are similar, mainly be-
cause these represent normalized results with respect to the base
case, which already adopts a leakage saving scheme (and thus takes
advantage of the additional idle links introduced by a larger mesh).
Still, as the number of nodes increases, slight increases in savings
occur.

The final measurement is the input sets’ effect on energy sav-
ings. Such an analysis is important because the proposed approach
is profile-based and a different input set can generate different net-
work states than those obtained by the input set used in profiling.
Figure 19 presents the results from Scheme I. In this graph, Input-
1 through Input-5 correspond to the results of different input sets
(Input-1 being the default used in profiling). These results show
that savings are quite consistent as inputs change. This is because a
different input does not significantly affect the inter-processor com-
munication pattern of a compiler-parallelized application, although
it can sometimes change the control flow of the application. As a
result, little variance results from the input used to execute the ap-
plication.

5. Discussion of Related Work
In recent years, several efforts have attempted to minimize energy
consumption of the NoC based systems and chip-to-chip networks.
For example, Simunic and Boyd [25] proposed a network-centric
power management scheme for NoCs. Their experimental results
demonstrate that this technique can predict future workloads more
accurately than node-centric power management schemes. Sote-
riou and Peh [26, 27] explored the design space for communication
link turn-on/off, based on a dynamic power management technique.

They proposed a design methodology for power-aware intercon-
nection networks. Worm et al [32] proposed an adaptive low-power
transmission scheme for on-chip networks. Their goal was to mini-
mize the energy required for reliable communications, while satis-
fying a QoS constraint by dynamically varying the voltages of the
links. Kim et al [15] designed a link shutdown scheme that min-
imized the number of active links while maintaining the connec-
tivity of the network. They made use of an adaptive routing algo-
rithm, and presented a detailed comparison of the proposed scheme
with voltage scaling. Shang et al [23] proposed applying dynamic
voltage scaling to communication links. They used a history-based
policy to lower the voltages of the links with low utilization. In
a sense, the present research is complementary to these previous
efforts. Since this new approach increases link idle periods, the ex-
pectation is that any link shutdown or voltage scaling based hard-
ware mechanism is more effective when used in conjunction with
the proposed method.

Another group of related work is power modeling for intercon-
nection networks. Eisley and Peh [10] proposed LUNA, a high-
level power analysis framework for on-chip networks. Wang et al
[31] presented an architectural-level power-performance simulator
for interconnection networks. Using this simulator, their paper eval-
uated different network architectures and the impact of different
communication patterns on energy consumption. Patel et al [21] fo-
cused on the power-constrained design of interconnection networks
and proposed power models for routers and links. Raghunathan et
al [22] presented a survey of energy-efficient on-chip communi-
cation techniques that function across the different levels: circuit-
level, architecture-level, system-level, and network-level. In con-
trast to these studies, the goal in this research is to explore the role
of a compiler in reducing the NoC energy consumption.

Prior compiler work [28, 19] for chip multi-processors focused
mainly on improving performance. Jalabert et al [14] designed a
tool called xpipes-Compiler, for instantiating application-specific
NoCs. Shin and Kim [24] use different algorithms to explore de-
sign space for NoC systems. Hu and Marculescu [13] proposed an
algorithm that maps a given set of IP blocks onto a regular NoC
structure and constructed a routing function that minimized com-
munication. The focus of these studies is to reduce energy con-
sumption via task mapping. Our approach is different from these
others in that it focuses on reducing energy consumption through
compiler-directed communication link reuse.

Chen et al [3] presented a compiler method that performed en-
ergy efficient channel allocation under performance bounds. Com-
pared to that static analysis, the proposed scheme uses profiling
information to identify optimization opportunities. In addition, the
approach can assign different routing paths to different message
sending operations, while Chen et al assigns a single fixed path
for each source-destination node pair. In fact, their approach re-
duces the leakage energy consumption by about 20%, on average,

403

over a hardware scheme that already performs link shutdown. As
given in Section 4, the normalized leakage energy consumption of
our approach and the hardware link shutdown method are around
30% and 48%, respectively. That is, the proposed scheme achieves
a leakage energy reduction of about 37% over and above the hard-
ware link shutdown scheme, demonstrating the importance of se-
lecting routes based on individual send operations, rather than fix-
ing it based on source-destination pairs (i.e., 37% saving versus
20% saving). Finally, Chen et al [4] presents a compiler directed
voltage scaling model which can be combined with the link shut-
down approach proposed in this paper to reduce NoC energy con-
sumption even further. Other recent software-based techniques for
NoCs include [12, 20].

6. Conclusions
The main contribution of this research is a profile-driven compiler
scheme that increases energy benefits obtained from a hardware-
based communication link shutdown mechanism. The proposed
compiler-based approach achieves its goal by determining the
routes of the communication messages at compile time in such
a fashion that link reuse between messages is maximized without
significantly affecting network performance. In other words, the
approach limits link usage, at a given time, to a small set of links,
and the remaining links shut down to save power. The experimen-
tal evaluation using twelve embedded applications shows that the
proposed approach is quite successful in practice.

Acknowledgments
We would like to thank Seth C. Goldstein and anonymous reviewers
for their valuable comments. This work is supported in part by NSF
Career Award 0093082.

References
[1] G. Ascia, V. Catania, and M. Palesi. Multi-objective mapping for

mesh-based NoC architectures. InProc. International Conference on
Hardware/Software Codesign and System Synthesis, Sept. 2004.

[2] L. Benini and G. D. Micheli. Powering networks on chips: energy-
efficient and reliable interconnect design for SoCs. InProc. the 14th
Int. Symp. on Systems Synthesis, 2001.

[3] G. Chen, F. Li, and M. Kandemir. Compiler-directed channel
allocation for saving power in on-chip networks. InProc. 33rd
Annual Symposium on Principles of Programming Languages, 2006.

[4] G. Chen, F. Li, M. Kandemir, and M. J. Irwin. Reducing noc energy
consumption through compiler-directed channel voltage scaling.
In Proc. the 2006 ACM SIGPLAN conference on Programming
Language Design and Implementation, pages 193–203, New York,
NY, USA, 2006. ACM Press.

[5] X. Chen and L.-S. Peh. Leakage power modeling and optimization in
interconnection networks. InProc. the Int. Symp. on Low Power and
Electronics Design, Aug. 2003.

[6] W. J. Dally and C. L. Seitz. Deadlock-free message routing in
multiprocessor interconnection networks.IEEE Trans. Comput.,
36(5):547–553, 1987.

[7] W. J. Dally and B. Towles. Route packets, not wires: on-chip
interconnection networks. InProc. the 38th Conf. on Design
Automation, 2001.

[8] J. Duato. A new theory of deadlock-free adaptive routing in wormhole
networks.IEEE Trans. Parallel and Distributed Systems, 4(12):1320–
1331, 1993.

[9] J. B. Duato, S. Yalamanchili, and L. Ni.Interconnection Networks.
Morgan Kaufmann Publishers, 2002.

[10] N. Eisley and L.-S. Peh. High-level power analysis of on-chip
networks. InProc. the 7th Int. Conf. on Compilers, Architectures and
Synthesis for Embedded Systems, Sept. 2004.

[11] P. S. M. et al. Simics: A full system simulation platform.Computer,
35(2):50–58, 2002.

[12] A. Hansson, K. Goossens, and A. Rdulescu. A unified approach to
constrained mapping and routing on network-on-chip architectures.
In Proc. International Conference on Hardware/Software Co-Design
and System Synthesis, 2005.

[13] J. Hu and R. Marculescu. Energy- and performance-aware mapping
for regular NoC architectures.IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 24(4), Apr. 2005.

[14] A. Jalabert, S. Murali, L. Benini, and G. D. Michieli. XpipesCom-
piler: A tool for instantiating application specific Networks-on-Chip.
In Proc. the Conf. on Design, Automation and Test in Europe, 2004.

[15] E. J. Kim, K. H. Yum, G. Link, N. Vijaykrishnan, M. Kandemir, M. J.
Irwin, M. Yousif, and C. R. Das. Energy optimization techniques
in cluster interconnects. InProc. the Int. Symp. on Low Power
Electronics and Design, Aug. 2003.

[16] http://cares.icsl.ucla.edu/MediaBench/.

[17] http://www.eecs.umich.edu/mibench/.

[18] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The
alpha 21364 network architecture.IEEE Micro, 22(1), Jan. 2002.

[19] R. Nagarajan, D. Burger, K. S. McKinley, C. Lin, S. W. Keckler, and
S. K. Kushwaha. Static placement, dynamic issue (SPDI) scheduling
for EDGE architectures. InProc. International Conference on
Parallel Architectures and Compilation Techniques, Oct. 2004.

[20] U. Ogras, J. Hu, and R. Marculescu. Key research problem in NoC
design: A holistic perspective. InProc. International Conference on
Hardware/Software Co-Design and System Synthesis, 2005.

[21] C. S. Patel. Power constrained design of multiprocessor intercon-
nection networks. InProc. the Int. Conf. on Computer Design,
Washington, DC, USA, 1997.

[22] V. Raghunathan, M. B. Srivastava, and R. K. Gupta. A survey of
techniques for energy efficient on-chip communication. InProc. the
40th Design Automation Conference, 2003.

[23] L. Shang, L.-S. Peh, and N. K. Jha. Dynamic voltage scaling
with links for power optimization of interconnection networks. In
Proc. International Symposium on High-Performance Computer
Architecture, Feb. 2003.

[24] D. Shin and J. Kim. Power-aware communication optimization for
networks-on-chips with voltage scalable links. InProc. Intl. Conf. on
Hardware/Software Codesign and System Synthesis, 2004.

[25] T. Simunic and S. Boyd. Managing power consumption in networks
on chip. InProc. the Conf. on Design, Automation and Test in Europe,
2002.

[26] V. Soteriou and L.-S. Peh. Dynamic power management for power
optimization of interconnection networks using on/off links. InProc.
Symposium on High Performance Interconnects, 2003.

[27] V. Soteriou and L.-S. Peh. Design space exploration of power-aware
on/off interconnection networks. InProc. the 22nd Int. Conf. on
Computer Design, Oct. 2004.

[28] M. B. Taylor and et al. The RAW microprocessor: A computational
fabric for software circuits and general purpose programs.IEEE
Micro, 22(2), 2002.

[29] http://www-unix.mcs.anl.gov/mpi/.

[30] http://www.ece.northwestern.edu/cpdc/Paradigm/Paradigm.html.

[31] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power-
performance simulator for interconnection networks. InProc. the
35th Int. Symp. on Microarchitecture, Nov. 2002.

[32] F. Worm, P. Ienne, P. Thiran, and G. D. Micheli. An adaptive
low power transmission scheme for on-chip networks. InProc.
International System Synthesis Symposium, 2002.

[33] N. D. Zervas, K. Masselos, and C. Goutis. Code transformations
for embedded multimedia applications: impact on power and
performance. InProc. ISCA Power-Driven Microarchitecture
Workshop, 1998.

404

