Profile-Driven Energy Reduction in Network-on-Chips

Feihui Li, Guangyu Chen, Mahmut Kandemir Ibrahim Kolcu
Department of computer Science and Engineering Computation Department
The Pennsylvania State University, USA University of Manchester, UK
{feli,gchen,kandemir}@cse.psu.edu ikolcu@umist.ac.uk
Abstract level, increasing on-chip power consumption demands a power-

aware design and an optimization process. Recent research shows
that using voltage/frequency scaling on communication links [24]
£nd shutting down the idle links [27] can significantly reduce NoC
power consumption. Such techniques, while very effective in re-
ducing power consumption in certain cases, work best when com-
munication links have long idle periods, which allow compensation
for performance/power overheads due to switching between volt-
age levels and between link shut-down/turn-on states. Specifically,
long idle periods are preferable from the viewpoint of maximizing
power savings through link shutdown.

Motivated by this preference, this paper proposes and evalu-
ates grofile-driven compiler optimizatiofor increasing the length
of idle periods of communication links for a two-dimensional,

Reducing energy consumption of a Network-on-Chip (NoC) is

a critical design goal, especially for power-constrained embed-
ded systems. In response, prior research has proposed sever
circuit/architectural level mechanisms to reduce NoC power con-
sumption. This paper considers the problem from a different per-
spective and demonstrates that compiler analysis can be very help
ful for enhancing the effectiveness of a hardware-based link power
management mechanism by increasing the duration of communi-
cation links’ idle periods. The proposed profile-based approach
achieves its goal by maximizing the communication link reuse

through compiler-directed, static message re-routing. That is, it
clusters the required data communications into a small set of com-

munication links at any given time, which increases the idle periods hi h network. Th d iler-directed h
for the remaining communication links in the network. This helps on-chip, mesh network. 1he proposed compiier-direécted approac
achieves its goal by maximizing communication link reuse. That

hardware shut down more communication links and their corre- : : ; L ;
sponding buffers to reduce leakage power. The current experimen-S: tis approach clusters the required data communications into a
tal evaluation, with twelve data-intensive embedded applications, small set _of links at any given time, increasing the idle periods fpr
shows that the proposed profile-driven compiler approach reducesthe remaining communication links in the network. Clearly, this

leakage energy by more than 35% (on average) as compared to cheme needs to occur in a performance-sensitive manner. There-
pure hardware-based link power management scheme. ore the_ goal Is to reduc_e network energy consumption as much
as possible without causing extra link contention and significantly

Categories and Subject DescriptordD.3.4 [Programming Lan- degrading network performance.
guage§ Processors—compilers; C.20¢mputer-Communication The targeted application domain is array/loop-intensive embed-
Network$: General ded programs, and the targeted NoC is a two-dimensional mesh

used by a single application at a time. Note that a large frac-
tion of embedded NoCs typically execute a single application and
Keywords Network-on-Chip, power, compiler, routing use static message routing for reasons such as energy efficiency
and buffer space minimization [13]. This paper proposes a profile-
: driven static message routing scheme that maximizes link reuse
1. Introduction between different execution states of a given application. Our ap-
The increasing complexity of communication patterns in embedded proach makes use of a novel data structure called the communica-
applications, which are parallelized over multiple processing units, tion graph (which captures different network states during applica-
creates difficulty for continued use of traditional bus-based on-chip tion execution) and a new abstraction: the “link signature” (which
communication techniques. Network-on-chip (NoC) architectures captures link utilization caused by messages in a given network
are rapidly replacing dedicated interconnects and buses in com-state). We implement our approach and test it using twelve data-
plex System-on-Chip (SoC) architectures. An NoC can connect andintensive embedded applications. Analysis of the test results show
manage communications among a variety of design elements ancthat the proposed profile-driven compiler approach reduces leak-
Intellectual Property (IP) blocks required by complex SoCs. Prior age energy by more than 35% on average, as compared to a pure
research of NoCs mainly focused on circuit/architectural level tech- hardware-based link power management scheme.
niques [2, 5, 31] and task mapping related issues [1, 13]. The remainder of this paper is organized as follows. Section 2
While, in principle, communication strategies similar to those introduces our on-chip mesh architecture and hardware support for
currently used for large off-chip networks can apply at the chip the compiler-directed message routing. Section 3 explains how link
signatures and the communication graph derive from an automated
compiler analysis and describes the link reuse optimization ap-
proach. Section 4 presents the experimental results from our im-
Permission to make digital or hard copies of all or part of this work for personal or plement_atlon. Sections 5 a”‘?' 6 describe related work and provide
classroom use is granted without fee provided that copies are not made or distributedCONcluding remarks, respectively.
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'0O7 June 11-13, 2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-633-2/07/0006 $5.00

General Terms Algorithms, Management, Experimentation

394

2. Architectural Model
2.1 Network Abstraction

code, requiring the packets of all the messages issued by a message-
send operation to follow the same route (the message-send opera-
tions considered here are source level communication commands

Our research focuses on a mesh-based NoC architecture, whose alisuch as MPISend in the MPI Library [29]). Please note that the
stract view appears in Figure 1. Each node in the mesh has a simpleselection of the communication library to use is orthogonal to the

single-issued, embedded core with a small amount of local mem-
ory (32KB in our experiments). Each node is connected to its local
switch through a network interface (NI) and thus communicates
with other nodes through switches and communication links. Inter-
processor communication is done via message passing.

|, |
S L 1S | 'S | 'S
N N N .
NI cPU NI| cPU NI| cPU NI| CPU
Memory Memory Memory Memory
S L 1S | 'S | 'S
N N N .
NI cPU NI| cPU NI| cPU NI| CPU
Memory Memory Memory Memory
S L 1S | 'S | 'S
—x —
NI cPU NI| CPU NI| cPU NI cPU
Memory Memory Memory Memory

Figure 1. Mesh-based NoC architecture (S: switch; NI: network
interface).

The internal structure of a switch is shown in Figure 2. Each
switch has an interface with its local processing unit. It also has four
input/output ports that interface with four neighboring switches.
Input/output buffers in a switch store the packets in transmission.
A cross-bar decides to which output port a packet is to be sent.
The default routing algorithm used by the switches is static X-Y
routing [9], which passes each packet first exclusively in the X-
dimension and then completely in the Y-dimension until reaching
the destination node.

Interfrace
to Local
Processing

Unit \\

Figure 2. Switch structure.

Based on prior research of power-aware networks [15, 27],
we employ a hardware-controlled link shutdown scheme. Each
communication link in the network, as well as its corresponding
buffers, can be turned off when they remain idle for a certain period
of time. The powered-off components re-activate on demand, i.e.,
they turn on only when needed.

2.2 Hardware Support for Compiler-Directed
Message Routing

Our goal is to determine the most appropriate routing for each mes-

focus of this paper.

To support the compiler-directed message routing, we extend
the switch design to handle two types of routing schenaes:
fault X-Y routingandcompiler-directed routingThe header of each
packet contains a flag bit, indicating which routing mechanism to
use for a given packet (0: X-Y routing; 1: compiler-directed rout-
ing). A packet using the default X-Y routing has the identification
(ID) of the destination node in its header, as shown in the upper part
of Figure 3. When a switch receives such a packet, it forwards the
packet according to the X-Y routing algorithm.

destination

flag counter orientation routing command sequence
[T TN

[TTTTTTTT]
\Y74
routing decision
Figure 3. Fields in the header of a packet (Top: default X-Y
routing; Bottom: compiler-directed routing).

[1]

Table 1. Routing decisions based on orientation and routing
command bits (N: North; S: South; W: West; E: East).
00 | 01

Orientation 00 01|10 10| 11 | 11
Routing command| 0 1 0 1 0 1 0 1
Routing decision | N E N W S E S W

On the other hand, the header of a packet that employs the
compiler-directed routing contains three fields (see the lower part
of Figure 3): the hop counter (4 bits), the orientation (2 bits), and
the routing command sequence (13 bits). Assuming that néde,
sends packety, to node,P;, for each switchSy, on the path of
this packet, a corresponding bit in the routing command sequence
of the packet tells the switch to which output port to forward this
packet. The meaning of a routing command bit, however, is inter-
preted along with the value of the orientation field. This means
that the compiler can only choose an alternate path from among
the set of possiblshortest pathsOnce the orientation of a path
is known (Northwestern: 01; Southwestern: 11; Northeastern: 00;
and Southeastern: 10), only a single bit of the routing command,
indicating the dimension (X: 1; Y: 0), can determine the routing de-
cision (North, South, West, or East). Table 1 provides the meaning
of routing commands for different values of the orientation field.
The node sending a given packet sets the value of the hop counter
of that packet. As the packet moves forward from one switch to an-
other, the hop counter number decreases by one. When the counter
value becomes zero, the packet has arrived at its destination. Due
to the limited number of bits available in a packet header in the
current implementation, the compiler-directed routing mechanism
is not applicable for a packet whose source and destination nodes
are more than 13 hops apart. For such a packet, the default X-Y
routing mechanism applies.

3. Optimizing Link Reuse

sage at compilation time thereby allowing maximized link reuse A high level view of our compiler-based approach appears in Fig-
across different messages. Thus, the compiler must have a way ofure 4. This approach profiles the parallel application code to be
providing routing information, which may be different from the de- optimized and builds a communication graph, which captures the
fault X-Y routing, to each message. We propose to let the compiler communication pattern of the entire parallel program (elaboration
attach routing information to each message-send operation in theof the concepts of link signature and communication graph appears

395

later in this section). Given a communication graph, a link reuse
optimizer statically re-routes the pre-determined message routing
paths to increase link reuse. The output of the link reuse opti-
mizer is a modified communication graph. Subsequently, the code

rewriter module annotates each message-send operation in the ap-

plication code with the determined message routing information
and generates an optimized parallel code.

Communication Graph ~ Modified Communication Graph

“Link Signature '(jptimized Linl
A Signature
Optimized
Parallel Parallel
Code . ode
Link Cod
- »| Reuse .| ~ode
Profiler > > .
t Optimizer Rewriter l

Figure 4. Compiler-directed link reuse optimization scheme. Each
vertex of the communication graph captures a network state.

3.1 Network State and Link Signature

m,

(a) A gather type of communication in a two-by-two mesh (Target node:
Ps).

Links: lo,1 l1,0 l23 32 o2 l20 l13 I3

U1,0: 20 0 0 0 0 0 20 0)

@1,1: (0 0 0 0 0 0 20 0)

U1,2: o 0 20 0 0 0 0 0)

51 20 O 20 0 0 0 40 0)

(b) Link utilization vectors ¢1,0, 1,1, andi,2) and link signatures;)
for the scenario in (a) (assuming all messages have a size of 20 packets).

Figure 5. Alink signature calculation example.

3.2 Communication Graph

The network state changes during the course of execution. More
specifically, the network transitions from a stafg, to another
state,S;, in two situations:

Assume that a parallel program to be executed on the mesh-based

NoC architecture consists efparallel threadsP:, P2, ..., Pn, and
threadP, is scheduled to run on thé" mesh node. These threads

e A new message is sent by communication commavid, ,,. In
this caseS; = S; U { My, }.

send messages to each other using communication commands e A message sent by communication commabij, ,, arrives at

(send operations). We denote the set of communication commands

in threadP, using C, = {Mip, M2y, ..o, Mip, .., Mg},
wheregq is the total number of communication commands in the
program code of threa®, and M, ,, is the k™ communication
command in the code dP,. For this study, all the messages sent
by a given M, , follow the same route in the NoC. At a given
point in execution, multiple messages may be undergoing trans-

its destination node. In this cas&; = .S; — { M, }.

A communication grapliCG) captures the communication be-
havior of a program. A communication graph is an undirected
graph, in which each vertex corresponds to a network state and,
each edg€S;, S;) indicates the transition between statésand
S;. W; ;, the weight attached to edgg5;, S;), gives the number

mission on the mesh. Representing the network state using a set off transitions taking place between statés,and S;, during the

message-send operationss, is:
S

{ M, | A message sent b1y, ,, is in transmission over
the mesh.

So = ¢ represents a state in which no message is in transmission.

Given a specific network state, a further determination of link
utilization at this state is necessary. Thek utilization vector
(LUV) for a given send operationMy, ,,, iS a vectoriy,,, the
4™ element of which gives the number of packets seniMdy. ,,
and transferred through th&" communication link of the mesh.
Thus, dink signature(LS), s;, to represent the link utilization at a
network states;, is:

Z ak,pv

Mk,pesi

5 =

where) " denotes element-wise vector addition operator.

Given a vectorii (which can be either an LUV or an LS), func-
tion 6(w) returns the set of links used by the message(s) captured
by . Figure 5 gives an example link signature calculation. The net-
work stateS: = {M,0, M1,1, M2} in this example indicates
a gather type of communication. Three concurrent 20-packet mes-
sagesmi,o, m1,1 andm 2, are sent by command$ti o, M 1,
and .M 2, respectively, as shown in Figure 5(a). The first task is
to obtain the LUVs for the corresponding send operations and then

add them to compute the corresponding LS for this state, as shown

execution of this program.

We useprofiling to build the CG of a parallel program. Specif-
ically, we instrument the target program to notify a profiler each
time a node sends a message or when a message arrives its desti-
nation node. The profiler keeps track of the current network state,
S;. When the profiler receives a naotification from the instrumented
program, it computes the new stafg, and increases the value of
Wi, ;, which represents the number of transitions betwggeand
S;. After the program completes its execution, we construct its CG
based on the computed network states, the state transitions, and the
values ofWV; ;. Figure 6(a) illustrates an example communication
graph.

step | vertex-pair considered

1®@ stelpve&:ipwco(;;ml
2

1® © 2o
10 © e &
4.®

(@ A communication (b) Processing order (c) Processing order
graph. by Scheme I. by Scheme II.

in Figure 5(b). Applying functiom to this link signature, we obtain
0(31) = {lo,1, 12,3, 11,3}, which means that this state has only three
links in use. From the resulting signature, one can also see that link
11,3 has the highest communication load (40 packets).

396

Figure 6. Two different approaches to traverse a CG (a shaded
vertex at stepk indicates that the corresponding link signature is
not modified at this step).

3.3 Maximizing Link Reuse Input:

Based on the previous definitions, we can re-express the problem OAtcotmm“nicatiO“ grap’G(V, B, W);
of increasing link reuse as one of maximizing link reuse between L:?Pufor eachM. - in the program:
adjacent vertices in a communication graph. That is, when going “P “P program.

from one state to another at runtime, the desire is to reuse the P — the set of network states that have been procegsed:
same set of links as much as possible. Each vertex in a CG has R — the set of communication commands whose LUVs
a default link signature, obtained using the default X-Y routing have been determined;
for messages sent by the communication commands in that vertex. C' — the set of candidate edges;
The compiler’s task is to re-assign link signatures to those vertices,
which will maximize communication link reuse. P=¢,R=¢,C=¢
while(P # V) {
- icati if(C =

3.?.1 Traversing a Communlcatlon C.araph. (C = ‘{75()590 $,)} if Wa.y is maximum:
It is necessary to determine an order in which we traverse network select(S;, S;) € C with maximumW; ;;
states to assign them new link signatures, as assigning a signature call rerouteg;, S;, R);
to a given vertex (network state) will affect the selection of the P=PuU{S;S;}
signatures for its neighbors in the CG. At least two different ways Il statesS; andS; have been processed.
of traversing a CG exist. The first approach starts with the edge R=RUS;USj; o
with the largest weight and performs the signature re-assignment to Z the LUV of the communication commands
the associated vertices. After that, this approach considers the edge In 5; ands; have been determined.

; / ' Pp ers 9 C" = {(S4,5,)|Sa € PASy € (V — P)};
with the next largest weight among the edges that are incident on C=(C—-{(8,5)Huc;

the selected vertices. Since one of the vertices of the edge under
consideration has an assigned signature, signature assignment is
for the other vertex only. This step repeats until all the vertices
are processed. This approach, referred t8a@sme,lexpands the
selected set of edges at each step by considering only the neighbors.

(a) Scheme I.

The second approach, referred tdSzheme |istarts the same way InpAuébmmunication grapEG(V, B, W);
as Scheme I. However, after selecting the edge with the largest output: T
weight and assigning new signatures to corresponding vertices, i, for eachM, ,, in the program;
the next edge selection considers all the remaining edges (i.e., not
just those that are incident on the previously selected vertices). P — the set of network states that have been procegsed;
To illustrate the differences between Scheme | and Scheme I, let R — the set of communication commands whose LUVs
us consider the example CG shown in Figure 6(a). The pairs of have been determined;
vertices considered by Scheme | and Scheme Il at each step (for ¢ —the set of candidate edges;
signature re-assignment) appear in Figure 6(b) and Figure 6(c), Pe¢:R=6:.C = E:
respectively. _Figure 7(a) and Fig_ure 7(b) provide the pseudo-codes whﬁe(f? ?é_v) { -
for the compiler algorithms that implement Scheme | and Scheme select a(S;, S;) € C if Wi is maximum;
I, respectively. call rerouteB;, S;, R);
o . i P:PU{SI',SJ‘};

3.3.2 Optimizing Link Reuse Between Two Adjacent Il statesS; andS; have been processed.

Network States R=RUS;USj;

/I the LUVs of the communication commands

1) Routing Flexibility. Re-routing (the messages sent by) the com- /in S; andS. have been determined
munication commands can achieve improvement in communica- C=cC v {(S-jS-)}- '
tion link reuse. In the present scheme, only ghertest pathsire } el

considered for re-routing messages since this typically causes less (B) Scheme
energy consumption than using longer paths. Even with this restric- '

tion, in many cases a certain re-routing flexibility is available. Con- Figyre 7. Pseudo codes for our two CG traversing schemes
sider a two-dimensional mesh where a messageis to be sent (Scheme | and Scheme II).

from a source nodex(, ys), to a destination nodegxf, yq). If

m = |zq — x| andn = |yq — ys|, this message has;, ,, possi-

ble, unique, shortest paths. Recall from Section 3.1 that the definedHowever, we can change the associated routing only once (i.e., all
link utilization vector represents the path taken by a message. Now,the messages sent by it are always transferred through the same
a set of alternate link utilization vecto(&LUV), A; ,, can repre- path). Therefore, when optimizing statés, and.S;, the possibil-

sent all the alternate (shortest) paths available to a message sent bity exists that some communication commands have already been
the communication commangd!; ,. Therefore, re-routing a mes- assigned new routes during the previous steps (sush as,4 and

sage can be thought of as the replacement of the current LUV for M5 5 in state,S,, andMys 3 in state,S,) and these routes can-

an associated; ,,, with a new LUV selected from the correspond- not be further changed. The goal is to choose a new LUV for each
ing ALUV set. The number of alternate link utilization vectors in send operation (except those already assigned new LUVS), in

an ALUV set (i.e.|A; p|) thus represents theuting flexibility for and.S, minimizing the number of unique links used §fa and.S,
(the messages sent by) communication commarig,,. (i.e., maximizing the link reuse).
2) Problem Formulation. Formulating the problem of optimiz- Selecting the new utilization vectors should not degrade the per-

ing the communication link reuse between two neighboring vertices formance of the default routing scheme. However, selecting alter-
in a CG focuses on two verticeS,, and.S,, as shown in Figure 8. nate re-routings can increase the network contention. Therefore,
Each communication command, e 4.3, 3 in stateS,, has a set some sort operformance constrainshould be introduced for se-

of alternate link utilization vectors, which represent the alternate, lecting the re-routings. In one network state, the communication
shortest paths for the corresponding message. A single commu-link with the highest load often heavily influences the latency of
nication command is likely to appear in multiple network states. transmitting messages. The link with the highest load corresponds

397

Fixed by the previous steps

Sa=U Mot Mz o Mazps Maaps Masps 3 N;;v:;(:s‘k Sp={ My g1 Mipgo Mys g3 Mpa ga }
ﬁa],pl 1’702,[72 ﬁa3,p3 Original LUVs ﬁhl,ql ﬁbz,qz ﬁh4,q4
[Aal,}ﬂ} [AaZ,pZ} [Aa3,p3} Alternate LUVs
Upy oy Uy Uy s Uy g U,s,s Optimized LUVs Uy Upogs Upsgs Upaga

Figure 8. Link reuse optimization between two network statésand.S.

to the largest entry in the link signature associated with a given
state. The higher the value of the largest entry, the more likely
there will be severe link contention. Therefore, in optimizing link
reuse, and in order to avoid degrading network latency, increasing
the value of the largest entry in any original link signature is un-
desirable (although the largest value may be permitted to shift to
another link). For example, given the default link signature (10, 40,
10, 10, 0, 0, 0, 0) of a network state, from the performance per-
spective, an alternate signature such as (10, 50, 0, 10, 0, 0, 0, 0) is
inexpedient. However, for another alternate signature (40, 20, 10, 0,
0, 0, 0, 0), the compiler has difficulty judging its impact on latency
as compared to the default, (10, 40, 10, 10, 0O, O, 0, 0). The cur-
rent implementation accepts this second alternate signature. Since
the proposed approach is built within a compiler in a modular fash-
ion, it is very flexible. That is, if desired, one can easily explore
more strict performance constraints. We want to emphasize, how-
ever, that judging the latency behavior of a network state based on
its signature at compile time is a very difficult problem in general.
This is the reason for adopting a simple compile-time heuristic,
based on the assumption that the link with the largest load typically
forms the main latency bottleneck.

3) Heuristic. We present a heuristic for calculating the routings
for (the messages sent by) the communication commands. The
pseudo code for our heuristic is given in Figure 9.

First, for eachM; , unassigned with a new routing in network
statesS, andS,, we calculate its LUV and ALUV. Also, we obtain
the link signatures for stateS,, and.S,. Based on the signatures,
we computenum_links, the total number of the links used i,
and.S, combined. The goal is to reduce the value of this variable
as much as possible under performance constraints. We sort the
communication commands in these two states into a sequence with
ascending routing flexibilities (represented|By , |). We start with
the communication command that has the lowest routing flexibility
and assign a proper route to it. The reason for starting with the
command with the lowest flexibility is that deciding the routing
of this command early in the optimization process is ultimately
more beneficial. Otherwise, due to its limited routing flexibility,
difficulties may arise for assigning a new LUV to it after many
other send operations have their routing paths fixed. We assign the
appropriate routes to the communication commands, one-by-one,
until processing all commands #, and.S, is complete.

The method for choosing a route for a communication com-
mand M, ,, (recall that all the messages sent by the sawtg,
follow the same path in the NoC) requires some explanation. With-
out losing generality, assuming that the send operation to be re-
routed belongs to stat®,, the heuristic selects a new LUV for op-
erationM; , by considering all the re-routing options captured in
A; p. For each alternate re-routing, the heuristic algorithm checks
whether the performance constraint is satisfied with respect to state

Input:
Sa, Sp — two network states;

R — the set of communication commands whose LUVs
have been determined
Output:
w;p, — LUV foreachM,; , € ((Sa USp) — R).

/I determine the LUV for each communication command
/l'in statesS,, andS, if it has not been determined yet.
procedure rerouté(,, Sy, R) {
for eachM; , € (Sa USy, — R) {
calculatei; ,, the LUV of M; ,,, based on X-Y routing;
calculateA; ,, the ALUV of M; ,;
calculates,, the link signature of statg,;
calculatesy, the link signature of stats,;
numlinks = |0(5.) U 0(3)];
if(0(5a) C 0(5) Vv 0(3p) C 0(5a))
return;
sortallM; p, € (Sa U Sy, — R) by the routing flexibility| A; |
for eachM; , € (Sqo U Sy, — R){
foreacht € A; p {
if Mi’p € Sa N Mi,p €Sy {
calculates,_new by usingv as LUV of M; ,,
calculatesy, ,,e., by usings as LUV of M; ,,
if(max(Sa_new) > max(5g)) continue;
if(max(Sp_new) > max(8p)) continue;
if(10(Sa-new) U 0(Spnew)| > num-links) continue;
if(|0(Sanew) U 0(Spnew)| = num_linksA
10(Sanew) 1 0(Spnew)| < 10(3a) N 0()))
continue;
replaceii; , with
Sa = Sanew; gb = gb_new;
numlinks = |0(5.) UO(8)];
} else{
iftMip€Sa){x=0ay=0b}
else{z=by=a;}
calculatesy _new by usings as LUV of M ,
if max(5z.new) > max(5,) continue;
if(|0(5z_new) U 0(3y)| > num_links) continue;
if(10(Sz-new) U 0(3y)| = num_linksA
10(52new) N0(5y)] < [0(5a) N O(E)])

continue;

replace LUV ofM; ,, i.e., ; p, With &
Sz = Sz_new:

num-inks = |0(5z) U 0(Sy)l;

}
}
}
}

functionmax(?) {
return the value of the largest entry @f
}

S.. If the performance constraint is met, the new link signature is

398

Figure 9. Communication link reuse optimization heuristic.

computed for staté,. Subsequently, using this new signature, de- respectively. Each step reduces the total number of links used in the
noteds,_».w, and the current signature of st&te(3,), the heuristic two network states (i.e., improves link reuse). Figure 10(g) gives
re-calculates the total number of links used by the messag¢s in the final routings for all the communication commands in state

and.S,. This total number of links issum_links. Among all the The modified LUVs and LSs returned by this method are given in
alternatives in the set; ,, that satisfy the performance constraint, Figure 10(h). Clearly, the total number of links used in stéeffgs
the heuristic selects the one that leads to the minimwm._links and.S, decreases from 16 to 12.

value. Ifnum_links cannot be reduced with any alternate utiliza-)
tion vector, the choice is for the alternate LUV that maximizes the 3.5 Code Rewriter

number of links reused by the two states (i|€(sa) N 0(5,)| is This component of our approach (see Figure 4) is responsible for
maX|m_|zed). T_he utilization vector for thIS communication com- providing a version of the message send operation, which incor-
mand is then fixed, and the routing assignment for this command porates the compiler-determined routing information. The code
is complete at this point. Once a communication command is given fragments shown in Figure 11 correspond to the example in Fig-
a new LUV, this command is not considered again when process- yre 10. After applying our algorithm, the default message send
ing the other vertex-pairs. When all the send operations have beengperations,send, (12, m;) and sendy 7(13,m;), are replaced
assigned new routes, the thread codes are annotated with the correyith the Operaﬂc’,ns including Speciﬁ(’: routing information, i.e.,

sponding LUVs. _ . sendsy 3(12, m;, Pi13) and sendi,7(13,m;, P1 7), respectively.

The computational complexity of the heuristic@(N « K « These versions of send operations assemble message headers by
Cyiyn), WhereN is the number of network statek, is the num- inserting routing paths according to Figure 3 and Table 1. There-
ber of send operations, ard,,, represents the largest routing fore, all the messages sent by operatiend; s have the message
flexibility in anm x n mesh, as mentioned earlier. header: 10110110001110000000; whereas all the messages sent by

operationsend,,7 have the header: 10100111010000000000. The
3.4 Example other message send operations remain unchanged, i.e., for those

. remaining messages, the flags in their message headers are zeros,
This section provides an example to illustrate how the link reuse 44 the default X-Y routing determines the routing paths.
optimization scheme works. Since the steps traversing a communi-

cation graph are relatively simple, we only present the link reuse

optimization between two adjacent network states. The focus is El{: fori =ir toiy El{:_f_(_)” =

on a four-by-four mesh network and two neighboring network sendi3(12,ms, Pra); || sendy7(13,mi PLo)i [2o for i = 40 1o
states in a CGS, and S,. The goal is to maximize link reuse O
between them, assum@ng thelt = {Ml,?,,/\/lm,/\/ll_,n}, and ¥ ¥ sendy 11 (14, m;);
Sy = {Mz,_g, Mo 7}. Figure 10(a) and Figure 10(b) illustrate the Laiforj = j1 toju Laiforj = i1 toju

default routings of the messages sent by these communication com- }

mands inS, and.S;, respectively. We assume that messags is sendz 3(15,m;); senda, 7(14, m;);

sent by the send operatioi; ;. For example, messages 7 is .

sent by the send operatiof/2,7, which is the second send op- } } (fl)_COde funning on node
eration in the code of threa®- that runs on mesh node 7. The

target node of this send operation is node 14. We further assume, ga) Code running on nade (7b) Code funning on node

for clarity of presentation, the size of each message is 20 packets.
One can calculate the LUV for each send operation and the LS
for each network state, as shown in Figure 10(d), under the default
routings. The ALUV sets for the send operations are also calcu- .
lated, although they are not shown here due to space limitations.3-6 Handling Deadlocks
However, the routing flexibility, given within the parentheses asso- An important issue that this scheme must address is how to han-
ciated with the corresponding message, appears in Figure 10(a) andile possible deadlocks, as the re-routings change the behavior of
Figure 10(b). the default X-Y routing scheme, which is a deadlock-free routing
The task is to select new LUVs for send operations, with the algorithm [6]. Dally and Seitz [6] proved that an acyclic chan-
assumption that no send operation in these two states has fixed ity el dependency graph is the necessary and sufficient condition for
LUV in the previous optimization steps (i.e., when processing the avoiding deadlocks. Thus, adding a simple deadlock handling pro-
other state pairs). Thus, considering all the operations in the two cedure (Figure 12) breaks the possible cycles within the channel de-
states, we start from\12, 3, which has the lowest routing flexibility. pendency graph by changing some messages’ routings. This proce-
With a flexibility of 1, it has no alternate LUV. Consequently, the dure applies after using the rerouting algorithm in Figure 9. Check-
route for this message is easily fixed, as shown in Figure 10(c) ing the routing paths within each state of the two network states
(this example uses the routings of the corresponding messages tan question identifies a cyclic channel waiting. If none exists, the
represent the selected LUVs). Next{1 11 has a routing flexibility procedure simply returns, indicating no possibility of deadlock. On
of 2. However, no beneficial alternate LUV for this communication the other hand, if there exists cyclic channel waiting (possible dead-
exists, and the approach maintains its default LUV, as is shown in |ocks), the deadlock handling procedure reviews all the messages
Figure 10(e). The next send operation to processfs7. Since causing cyclic channel waiting. For each message, the algorithm
using any alternate LUV for it would violate the performance checks for an alternate path breaking the cycle in the channel de-
constraint in staté), (for example, using either of the two alternate pendency graph and, at the same time, without increasing the num-
LUVs, link I7,11 would overload), this operation is also fixed with ber of links used by the two network states. If such a path exists, it
its default LUV. This step completes the processing of all the send replaces the original path; if not, the algorithm simply returns.
operations in stat&),. For each communication command in state, An important observation at this point is that, while the pre-
Sy, our approach decides to employ the default LUV, and the viously explained deadlock handling procedure helps reduce the
resulting routings are the same as those in Figure 10(b). Thus, we
do not show the result of step Il in Figure 10. In the following 1A petter approach would be to search for a path that eliminates the
two steps, the heuristic returns beneficial re-routings for operations potential deadlock but does not necessarily use the same number of links.
M7 and M, 3, as illustrated in Figure 10(f) and Figure 10(g), However, this would make the algorithm much more complex.

Figure 11. Code rewriting for the example in Figure 10.

399

(c) Re-routing step | (stat8}).

Links: I32 lo1 lio loa las lsi2 lre .9 li,i0 lioga lzz l7an hLinas lsjio
U1,3: (20 20 20 20 20 20 0 0 0 0 0 0 0 0 ..)
wdy,7: © 0 0 0 0 0 20 20 20 20 0 0 0 0 0 0 ..)
ay,11: © 0 0 0 0 0 0 0 0 0 20 20 0 0 0 0)
Sat (20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 0)
Uz2,3: © 0 0 0 0 0 0 0 0 0 0 0 20 20 20 0 o)
g, 7: © 0 0 0 0 0 20 0 0 0 0 20 0 0 0 20)
Sp: (] 0 0 0 0 0 20 0 0 0 0 20 20 20 20 20)
[0(8a) VO = {32, l2,1, l1,0, loya, las, Is,12, 7,6, l6,5, I5,9, lo,13, l11,105 l10,14, I3,7, I7,11, l11,15, l6,10}| = 16

(d) The link utilization vectors and link signatures using default X-Y routigigand s;, are the signatures for stafs, andS;, respectively. The
total number of links used by the two states is 16. Note that the LUV entries not shown above explicitly are zero.

(e) Re-routing step Il (statd,). (f) Re-routing step IV (stat&,). (g) Re-routing step V (stat§,,).
Links: Iz 191z linao lioaa I3z l7an linas leo line lisia liaas lizae
u'q,3: © 0 0 0 20 20 20 0 0 20 20 20 ..)
Wt (20 20 0 0 0 0 0 20 20 0 0 0)
W (0 0 20 20 0 0 0 0 0 0 0 0o .

87a2 (20 20 20 20 20 20 20 20 20 20 20 20 .r)
u'2 3: © 0 0 0 20 20 20 0 0 0 0 0)
diagi (20 O 0 20 0 0 0 20 0 0 0 0)

s_;bi (20 0 0 20 20 20 20 20 0 0 0 0)
10(sa) UO(ss)| = [{lre, lo,1a, l11,10, 10,14, U3,7, I7,11, L1115, le,10, L1090, 15,14, l14,13, l1s,12}] = 12

(h) The link utilization vectors and link signatures after re-routiﬁg. ands’, are the new signatures determined by our approach for Stated
stateSy, respectively. The total number of links being used by the two states is 12. Note that the LUV entries not shown above explicitly are zero.

Figure 10. An example that illustrates how our approach works. (a) and (g) represent the default routings and compiler-determined routings

of network stateS,,, respectively. (b) represents the default routings of network Statthe compiler does not change the routingsSpin
this example).

probability of experiencing a deadlock at runtime, it cannot com- draining the infrequent deadlocks. The important point is that this
pletely eliminate deadlocks. This is because the rerouting algorithm dynamic approach does not incur extra cycle costs or energy con-
is profile driven, and a new input to the application can change the sumption as long as no deadlocks occur at runtime. When dead-
execution behavior. As a result, a runtime based, deadlock handlinglocks occur, however, draining the stuck messages results in both
approach is needed. To ensure fully deadlock-free execution, weextra latency and power consumption (due to leakage).

use the dynamic, hardware-supported deadlock avoidance rule em-
ployed by the Alpha 21364 network architecture [18]. This rule, ;
based on a theory proposed by Duato [8], states that a cyclic chan- ™ Experiments

nel dependency graph does not lead to deadlocks if packets card.1 Simulation Environment and Benchmarks

drain via a deadlock-free path. By using virtual channels (separate1q conduct the experiments, we implemented a flit-level on-chip in-

buffer queues), logically distinct networks, which include an adap- terconnection network simulator. The network, parametrized sim-
tive network and a deadlock-free network, are constructed. In this jjar 1o that in [5, 7], is in a five-by-five configuration. The link

approach, for performance reasons, most bandwidths are assigﬂegpeed is set to 1Gb/sec. Each switch input port has a buffer that
to the adaptive network (formed by adaptive virtual channels with can hold 64 flits; each flit is 128 bits wide (packet size is 16 flits).
no routing limitation), while the deadlock-free network (formed = The communication links in this network can be shutdown inde-

by deadlock-free virtual channels \'Nith'ro_uting restription) _used pendently, using a time-out based mechanism as described in [27].
to drain deadlocked packets occupies limited bandwidth. Since aThe time-out counter threshold for the hardware-based scheme is

deadlock handling procedure already runs after rerouting (as ex-get to 1.5sec based on some preliminary analysis. The time taken
plained above), a limited deadlock-free bandwidth is sufficient for 15 switch a link from the power-down state to the active state is set

400

@
&

Input: m
Sa, Sp — two network states;
R — the set of communication commands whose LUNs

have been determined
i;,p — LUV foreach M, ;, € (Sq, U Sy) decided by
the rerouting algorithm in Figure 9.

@
3

»
b
|

N
3

o

Link Utilization (%)

Output:
@, — LUV foreachM,; , € ((Sq USp) — R).

o wu o

Morph2
Disc
Jpeg
Viterbi
Rasta
3Step-log
Full-search
Hier
Phods

=
Lame
FFT

procedure handleeadlock(){
if (!HasCyclicWait(S,) A HasCyclicWaitSy)) {

return; Figure 13. Link utilization.
} else{
calculatesy, the link signature of stat8,;
calculatesy, the link signature of staté; link shutdown are maximized without unnecessarily hurting net-
numlinks = [0(5a) U 0(5)|; work latency. In the rest of this paper, this scheme with the default
for eachM,,, € D (D: minimal subset ofSq U Sp) — R routing and link shutdown hardware is thase schemé&he other
causing channel cyclic waiting) two schemes evaluated for this study are Scheme | and Scheme

calculateA; ,, the ALUV of M; ,;

it I, as discussed earlier in Section 3.3.1. Both schemes run on top
foreachd € A; p {

calculates,_neqw by usings as LUV of M of the same Iin}(shl_Jtdown hardware used i_n th'e base sch_eme, and
calculates), ,,o,, by USINg7 as LUV ofM[: the main goal in this experimental evaluation is discovering how
if(|0(Fanew) U 0(8pnew)| = num_linksA much additional energy savingsur compiler-directed re-routing
IHasCyclicWaitSq) A HasCyclicWaitS},)) approach generates over that of the hardware-based link shutdown
replacet; p, with ¥ approach.
} The information about the applications used in this study ap-
} pears in Table 2. A common characteristic of these benchmarks
} is their array/loop-intensive embedded application nature. The first
¥ five benchmarks are collected from different sources, the next four
t from [33] and the last three codes are the only array-based codes
in the MediaBench [16] and MiBench [17] suites. The second col-
umn shows a brief description of each benchmark. The code sizes
of these benchmarks range from 63 to 8,612 C lines, while their
dataset sizes are within the range of 68.9KB-1,866.4KB. The third
as Jusec, and the energy overhead of this switching is assumed toand fourth columns present the number of nodes and edges in
be 14QuJ, based on prior research [5, 27]. This study’s simulator the communication graph the proposed approach builds for each
uses the on-chip, interconnection network power model proposed benchmark. The table indicates that the number of nodes is not
by Chen and Peh [5]. When a link is turned off, it consumes zero excessively large. The fifth column gives the leakage energy con-
leakage energy. The network energy model employed is not a majorsumption in the network under the base scheme, as described ear-
contribution of this paper and requires no further elaboration. Un- lier. The values within the parentheses show the leakage saving per-
der the simulation parameters mentioned earlier, the leakage energentages achieved by this base scheme over an alternate scheme
(which includes the leakage in the links as well as in the switches) that does not perform any network power management. Finally, the
contributes to about 41% of the total network energy consumption Sixth column indicates network latency of the base scheme (that
(leakage plus dynamic), on average, under the 65nm process techis, the total number of cycles spent in the network). The values
nology. In order to accurately quantify the performance impact of within parentheses in this column show the percentage degradation
this approach, we also connected the network simulator to SIM- in network latency as compared to a case with no power optimiza-
ICS [11]. Each node of the architecture is an 800 MHz, embedded tion. The fifth and sixth columns show that the base scheme saves

Figure 12. Reducing potential deadlocks.

in-order, CPU with 32KB instruction and data caches. 52.2% leakage power on an average, and incurs 8.4% additional
The compiler component for this approach uses the Paradigm latency over a case with no power optimization.)
compiler infrastructure [30]. We modified the original front-end of ~ The energy and performance results presented in the rest of this

the compiler to accept C codes (in addition to Fortran codes). In- Section are with respect to the absolute values listed in the fifth and
put code is optimized such that, for each loop nest, the outermostSsixth columns of Table 2, respectively. That is, results are normal-
loop that does not carry any loop-carried data dependencies is par-ized with respect to the corresponding results of the base scheme
allelized and the inter-processor communication is hoisted to the that implements the hardware-based link shutdown. We want to
highest loop level possible using message vectorization. This is aeémphasize that the presented performance and energy results in-
well-known communication optimization. The communication li- clude all extra network overheads incurred by the proposed ap-
brary used for generating communication calls is MP1[29]. Having proach (e.g., those due to augmented message headers). The in-
determined the code fragment that will be executed by each pro- crease in compilation time due to our optimization ranged between
cessor, invoking the approach discussed in this paper follows. This89% (3Step-log) and Lame 236% (Lame), including time spent
approach determines the link signatures, builds the communicationprofiling. Since both profiling and compilation are essentially off-
graph, and performs message re-routing, as explained earlier. BotHine activities, these increases are within acceptable range. In none
communication graph traversal schemes (Scheme | and Schemedf the experiments we conducted (even the ones with the different
1), discussed in Section 3.3.1, are implemented. The experimen- input sets than those used for profiling), we observed any deadlock.
tal methodology includes performing experiments with three dif- That is, our static deadlock elimination technique was very effec-
ferent versions for each benchmark. The first version is the one tive In practice.

that employs the default routing, i.e., the X-Y routing and uses |

the underlying hardware-based link shutdown scheme, modeled af-4'2 Results
ter the schemes described in [27, 15, 5]. In this implementation, Figure 13 presents the average link utilization (the fraction of the
parameters are selected such that the energy savings achieved bgycles in which the links are used for transferring packets). The

401

0.9 — == = = 0.9
60 0.8 ;’/% e —=—Disc

—+—Morph2
Z - 0.8 —=— Disc
) /V/ = % —&—Jpeg —a—Jpeg
50 4 _ 0.7 V > > Viterbi 0.7 Viterbi
06 // % X —%— Rasta 0.6
04 | | L oe /// /(R e —e—3Step-log
38 7

——Fullsearch| 30 —— Full-search
/
W Scheme | 0.4 4 /. —&—Hier 0.4 —— Hier
mScheme I //é/‘y Phods

—+— Epic

Reduction in Leakage Energy Consumption (%)
8
|

0.2 —% —e—Lame 0.2 —e—Lame
10 7 H 0.1 —&—FFT 0.1 & FFT
0 0
o o) o) o o) +) o =) o =))) +
o 9 m s 8§ T S 5 9 L2 o | S S S S S 1S3 IS} S =] S S S S S S S
55 &35 %8¢ 538 &5t -2 8 8 8 8 8 8 = 5 8 g 8 & 8
g S o :%l ? & 3 - o e} =] S - =) g
© 2 Cycles . Cyc\e_s
Figure 14. Percentage reductions in () Default routing. (b) Re-routing (Scheme I).

leakage energy consumption. Figure 15. CDF for link idle periods.

Table 2. Benchmarks from experiments and their important char-
acteristics. Energy values are in mJ, and the latency values are in
million cycles.

mBest
mBase
mScheme |
OScheme It

Benchmark Brief CG Size | Network Network
Name Description Node|Edge| Energy Latency

Morph2|{Morphological operations 338 |1081] 75.5(64.9%) 380.4(8.8%)|
Disc|Speech/music discriminator {816 |2937| 99.2(46.3%) 123.6(6.9%)
Jpeg|Compression for stillimages (524 |1729| 92.7(55.8%)445.1(10.3%)

Viterbi|A graphical Viterbi decoder |622 |2239| 72.5(32.9%) 150.8(9.8%)|

Normalized Leakage Energy Consumption (%)

Disc
Jpeg
Viterbi
Rasta
Hier
Phods
Epic
Lame
FFT

N
s
=
S
=

3Step-log
Full-search

Rasta|Speech recognition 498 |1424|118.1(50.7%) 219.5(6.2%)|
3Step-log [Logarithmic search motion eqt127 | 396 | 15.2(62.4%) 107.4(5.7%) Flgure 17. Leakage energy Consumpt|0ns

Full-search|Full search motion est. 136 | 448 | 13.5(48.0%)| 95.6(12.3%)

Hier|Hierarchical motion est. 138 | 503 | 20.4(56.3%)| 151.9(7.3%)

Phods|Parallel hierarchical motion e$128 | 440 | 16.7(66.6%)[111.3(10.4%
Epic Image datz compression ;32‘2‘ 45;2 18003-9(30670% ‘2‘22-4(2-32@ are 37.30% and 39.56% for Scheme | and Scheme II, respectively.
e oSt om || o2 S 500/ 21210980 This means that both edge selection schemes are successful i re-

ducing the leakage energy consumption, with neither being clearly
superior. These results clearly show that the compiler-directed link
reuse optimization can improve the behavior of the hardware-based
link shutdown scheme. To explain why message re-routing brings
2.00% further savings over the base scheme alone, Figures 15(a) and (b)
present the CDF (cumulative distribution function) curves for the
1.50% e | (network link idle periods with the base scheme and the compiler-directed
m Scheme I (network message re-routing approach (Scheme 1). An (x,y) point on a given

latency)

1.00% 7 mSorene | s curve in these graphs indicates that y*100 percent of the total link
OScheme I idle periods are equal or less than x cycles. One can see from these
0.50% {execution cyees) plots that the message re-routing increases the link idle periods sig-
nificantly. The resulting increase in idle times, in turn, allows the
0.00% + hardware-based link shutdown scheme to be used more effectively.
' The percentage increases in the network cycles (network la-
tency) and overall execution time over the base scheme are in Fig-
ure 16 (the network latency increases due to the base scheme it-
Figure 16. Percentage increases in network cycles and overall self appear in the last column of Table 2). From these results, the
execution time. average network latency increase with Scheme | and Scheme Il
(over the base scheme) are 1.21% and 1.29%, respectively. In other
words, the network overhead brought by the new approach, over the
average link utilization for the benchmarks varies between 10.6% base scheme, is very small. This overhead is attributable to the link
and 32.3%, averaging 21.4%. In other words, link utilization is not contention created by the approach during the optimization of the
very high. The main reason for this is that, as explained earlier, link signatures. A very small fraction of this increase is also due to
the applications in our experimental suite are optimized through the additional latency imposed by the augmented message headers.
several source-level communication optimizations that minimize Also observable from Figure 16 is that the average increase in over-
inter-processor data communication. That is, the compiler is very all execution time is less than 0.5% for both Scheme | and Scheme
successful in reducing the amount of inter-processor communica- 1.
tion. This, in turn, reduces the average link utilization in She 5 Figure 17 summarizes the normalized leakage energy consump-
mesh (a network that is not very large). tions with the different schemes. The results are normalized with
The next set of results, presented in Figure 14, show the percent-respect to a scheme that does not employ any power management.
age reduction in leakage energy consumption when using the pro-For each application, the first bar in this graph gives the best (mini-
posed approach. Each bar in this bar-chart gives the leakage energynum) possible leakage consumption. “Best” in this context means
saving over the base scheme. Each application has two bars, onehat a link and the corresponding switch are turned off as soon as
for each edge selection scheme discussed in Section 3.3.1: Schemthey become idle and turned on (without any penalty) upon the
I and Scheme Il. From these results, the average leakage energyext request. The second bar for an application gives the normal-
savings, when applying the compiler-directed message re-routing, ized leakage consumption from the base scheme. The last two bars

2.50%

Percentage Increase

Morph2
Disc

Jpeg
Viterbi
Rasta
3Step-log
Full-search
Hier
Phods
Epic
Lame
FFT

402

70 60

60

50

—e—Morph2
—=—Disc
——Jpeg
—x—Viterbi
—*—Rasta
—e—3Step-log
—+—Full-search

50
40

W Input-1
B Input-2
30 Elnput-3
—_ Olnput-4

40

30

Reduction in Leakage Energy Consumption
(%)

|
F
g
Percentage Reduction in Leakage Energy Consumption
%,

Phoci 5 input-5
20 — —o—Epic
s e
10 —a—FFT 10
0 0 1l il
15 20 25 30 35 40 45 50 ¥ g g8 2 8856 8 8 2 2L
Number of Nodes ;; 58 5 2 ¢ é‘ g T g w g
Figure 18. Sensitivity to the number of nodes 8 s
(Scheme I). The results with Scheme Il are simi- Figure 19. Sensitivity to the input size (Scheme
lar.). The results with Scheme Il are similar.

on the other hand are for this study’s Scheme | and Il. These re- They proposed a design methodology for power-aware intercon-
sults show that the average normalized leakage consumption val-nection networks. Worm et al [32] proposed an adaptive low-power
ues for the best case, the base scheme, Scheme | and Scheme ttansmission scheme for on-chip networks. Their goal was to mini-
are 21.40%, 47.85%, 30.00% and 28.92%, respectively. That is, mize the energy required for reliable communications, while satis-
the base scheme, Scheme | and Scheme Il reduce leakage enerdying a QoS constraint by dynamically varying the voltages of the
consumption by 52.15%, 70.00% and 71.08%, respectively. This links. Kim et al [15] designed a link shutdown scheme that min-
means that Scheme | and Il save significant amounts of leakageimized the number of active links while maintaining the connec-
energy as compared to the base scheme. When considering the dytivity of the network. They made use of an adaptive routing algo-
namic energy as well (in addition to leakage), we found that the to- rithm, and presented a detailed comparison of the proposed scheme
tal (average) energy savings achieved by the base scheme, Schemeith voltage scaling. Shang et al [23] proposed applying dynamic
I and Scheme Il are 21.37%, 27.49% and 27.94%, respectively, in- voltage scaling to communication links. They used a history-based
cluding the impact of augmented message headers. These total enpolicy to lower the voltages of the links with low utilization. In
ergy savings resulting from the proposed schemes are quite signif-a sense, the present research is complementary to these previous
icant, considering the fact that the best scheme can save, at mostefforts. Since this new approach increases link idle periods, the ex-
32.22% of the total network energy. pectation is that any link shutdown or voltage scaling based hard-
The graph in Figure 18 plots the leakage energy savings for ware mechanism is more effective when used in conjunction with
Scheme | with different numbers of nodes. The default mesh usedthe proposed method.
so far in the experiments has 25 ¢<5) nodes. All the curves are Another group of related work is power modeling for intercon-
normalized with respect to the base case with a corresponding num-nection networks. Eisley and Peh [10] proposed LUNA, a high-
ber of nodes. The results from Scheme Il are very similar to those level power analysis framework for on-chip networks. Wang et al
presented in Figure 18, so they are omitted. The leakage energy[31] presented an architectural-level power-performance simulator
savings obtained from different mesh sizes are similar, mainly be- for interconnection networks. Using this simulator, their paper eval-
cause these represent normalized results with respect to the baseated different network architectures and the impact of different
case, which already adopts a leakage saving scheme (and thus takesommunication patterns on energy consumption. Patel et al [21] fo-
advantage of the additional idle links introduced by a larger mesh). cused on the power-constrained design of interconnection networks
Still, as the number of nodes increases, slight increases in savingsand proposed power models for routers and links. Raghunathan et
occur. al [22] presented a survey of energy-efficient on-chip communi-
The final measurement is the input sets’ effect on energy sav- cation techniques that function across the different levels: circuit-
ings. Such an analysis is important because the proposed approaclevel, architecture-level, system-level, and network-level. In con-
is profile-based and a different input set can generate different net-trast to these studies, the goal in this research is to explore the role
work states than those obtained by the input set used in profiling. of a compiler in reducing the NoC energy consumption.
Figure 19 presents the results from Scheme I. In this graph, Input- Prior compiler work [28, 19] for chip multi-processors focused
1 through Input-5 correspond to the results of different input sets mainly on improving performance. Jalabert et al [14] designed a
(Input-1 being the default used in profiling). These results show tool called xpipes-Compiler, for instantiating application-specific
that savings are quite consistent as inputs change. This is because BloCs. Shin and Kim [24] use different algorithms to explore de-
different input does not significantly affect the inter-processor com- sign space for NoC systems. Hu and Marculescu [13] proposed an
munication pattern of a compiler-parallelized application, although algorithm that maps a given set of IP blocks onto a regular NoC
it can sometimes change the control flow of the application. As a structure and constructed a routing function that minimized com-
result, little variance results from the input used to execute the ap- munication. The focus of these studies is to reduce energy con-

plication. sumption via task mapping. Our approach is different from these
others in that it focuses on reducing energy consumption through
5. Discussion of Related Work compiler-directed communication link reuse.

R Chen et al [3] presented a compiler method that performed en-
In recent years, several efforts have attempted to minimize energy grqy efficient channel allocation under performance bounds. Com-

consumption of the NoC based systems and chip-to-chip networks. yareq 1o that static analysis, the proposed scheme uses profiling
For example, Simunic and Boyd [25] proposed a network-centric jy¢ormation to identify optimization opportunities. In addition, the

power management scheme for NoCs. Their experimental resultsynnroach can assign different routing paths to different message
demonstrate that this technl_que can predict future workloads MOresending operations, while Chen et al assigns a single fixed path
accurately than node-centric power management schemes. Sotegor each source-destination node pair. In fact, their approach re-

riou and Peh [26, 27] explored the design space for communication y,ces the leakage energy consumption by about 20%, on average,
link turn-on/off, based on a dynamic power management technique.

403

over a hardware scheme that already performs link shutdown. As [11] P. S. M. et al. Simics: A full system simulation platfor@omputer
given in Section 4, the normalized leakage energy consumption of 35(2):50-58, 2002.

our approach and the hardware link shutdown method are around[12] A. Hansson, K. Goossens, and A. Rdulescu. A unified approach to
30% and 48%, respectively. That is, the proposed scheme achieves constrained mapping and routing on network-on-chip architectures.
a leakage energy reduction of about 37% over and above the hard- In Proc. International Conference on Hardware/Software Co-Design
ware link shutdown scheme, demonstrating the importance of se- and System Synthes&005.

lecting routes based on individual send operations, rather than fiX- [13] J. Hu and R. Marculescu. Energy- and performance-aware mapping

ing it based on source-destination pairs (i.e., 37% saving versus
20% saving). Finally, Chen et al [4] presents a compiler directed

voltage scaling model which can be combined with the link shut-

down approach proposed in this paper to reduce NoC energy con-
sumption even further. Other recent software-based techniques for

NoCs include [12, 20].

6. Conclusions
The main contribution of this research is a profile-driven compiler

for regular NoC architectureslEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systerd(4), Apr. 2005.

[14] A. Jalabert, S. Murali, L. Benini, and G. D. Michieli. XpipesCom-
piler: A tool for instantiating application specific Networks-on-Chip.
In Proc. the Conf. on Design, Automation and Test in Eur@pe4.

[15] E. J. Kim, K. H. Yum, G. Link, N. Vijaykrishnan, M. Kandemir, M. J.
Irwin, M. Yousif, and C. R. Das. Energy optimization techniques
in cluster interconnects. IRroc. the Int. Symp. on Low Power
Electronics and DesigrAug. 2003.

scheme that increases energy benefits obtained from a hardwarel16] http://cares.icsl.ucla.edu/MediaBench/.
based communication link shutdown mechanism. The proposed [17] http://www.eecs.umich.edu/mibench/.

compiler-based approach achieves its goal by determining the [1g] 5. s. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The

routes of the communication messages at compile time in such
a fashion that link reuse between messages is maximized without

significantly affecting network performance. In other words, the
approach limits link usage, at a given time, to a small set of links,

and the remaining links shut down to save power. The experimen-
tal evaluation using twelve embedded applications shows that the

proposed approach is quite successful in practice.

Acknowledgments

We would like to thank Seth C. Goldstein and anonymous reviewers

for their valuable comments. This work is supported in part by NSF
Career Award 0093082.

References

[1] G. Ascia, V. Catania, and M. Palesi. Multi-objective mapping for
mesh-based NoC architectures.Aroc. International Conference on
Hardware/Software Codesign and System Synth8sigt. 2004.

L. Benini and G. D. Micheli. Powering networks on chips: energy-
efficient and reliable interconnect design for SoCsPtac. the 14th
Int. Symp. on Systems Synthe2B01.

G. Chen, F. Li, and M. Kandemir. Compiler-directed channel
allocation for saving power in on-chip networks. Mroc. 33rd
Annual Symposium on Principles of Programming Langua2@e6.

2

—

3

—

[4

[l

G. Chen, F. Li, M. Kandemir, and M. J. Irwin. Reducing noc energy
consumption through compiler-directed channel voltage scaling.
In Proc. the 2006 ACM SIGPLAN conference on Programming
Language Design and Implementatigpages 193-203, New York,
NY, USA, 2006. ACM Press.

X.Chen and L.-S. Peh. Leakage power modeling and optimization in
interconnection networks. IRroc. the Int. Symp. on Low Power and
Electronics DesignAug. 2003.

W. J. Dally and C. L. Seitz. Deadlock-free message routing in
multiprocessor interconnection network$EEE Trans. Comput.
36(5):547-553, 1987.

[7] W. J. Dally and B. Towles.
interconnection networks.
Automation 2001.

[8] J. Duato. A new theory of deadlock-free adaptive routing in wormhole
networks.IEEE Trans. Parallel and Distributed System$12):1320—
1331, 1993.

[9] J. B. Duato, S. Yalamanchili, and L. Ninterconnection Networks
Morgan Kaufmann Publishers, 2002.

(5]

(el

Route packets, not wires: on-chip
IfProc. the 38th Conf. on Design

[10] N. Eisley and L.-S. Peh. High-level power analysis of on-chip
networks. InProc. the 7th Int. Conf. on Compilers, Architectures and
Synthesis for Embedded Syste®spt. 2004.

alpha 21364 network architecturl=EE Micro, 22(1), Jan. 2002.

[19] R. Nagarajan, D. Burger, K. S. McKinley, C. Lin, S. W. Keckler, and
S. K. Kushwaha. Static placement, dynamic issue (SPDI) scheduling
for EDGE architectures. IfProc. International Conference on
Parallel Architectures and Compilation Techniquéxt. 2004.

[20] U. Ogras, J. Hu, and R. Marculescu. Key research problem in NoC
design: A holistic perspective. IRroc. International Conference on
Hardware/Software Co-Design and System Synth26i85.

[21] C. S. Patel. Power constrained design of multiprocessor intercon-
nection networks. IrProc. the Int. Conf. on Computer Design
Washington, DC, USA, 1997.

[22] V. Raghunathan, M. B. Srivastava, and R. K. Gupta. A survey of
techniques for energy efficient on-chip communicationPtac. the
40th Design Automation Conferen@903.

[23] L. Shang, L.-S. Peh, and N. K. Jha. Dynamic voltage scaling
with links for power optimization of interconnection networks. In
Proc. International Symposium on High-Performance Computer
Architecture Feb. 2003.

[24] D. Shin and J. Kim. Power-aware communication optimization for
networks-on-chips with voltage scalable links.Aroc. Intl. Conf. on
Hardware/Software Codesign and System Synth2@4.

[25] T. Simunic and S. Boyd. Managing power consumption in networks
on chip. InProc. the Conf. on Design, Automation and Test in Euyope
2002.

[26] V. Soteriou and L.-S. Peh. Dynamic power management for power
optimization of interconnection networks using on/off links Piroc.
Symposium on High Performance Interconng2@03.

[27] V. Soteriou and L.-S. Peh. Design space exploration of power-aware
on/off interconnection networks. IRroc. the 22nd Int. Conf. on
Computer DesignOct. 2004.

[28] M. B. Taylor and et al. The RAW microprocessor: A computational
fabric for software circuits and general purpose progranfizEE
Micro, 22(2), 2002.

[29] http://www-unix.mcs.anl.gov/mpi/.
[30] http://www.ece.northwestern.edu/cpdc/Paradigm/Paradigm.html.

[31] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power-
performance simulator for interconnection networks.Phoc. the
35th Int. Symp. on Microarchitectur&lov. 2002.

[32] F. Worm, P. lenne, P. Thiran, and G. D. Micheli. An adaptive
low power transmission scheme for on-chip networks. Phoc.
International System Synthesis Symposi2002.

[33] N. D. Zervas, K. Masselos, and C. Goutis. Code transformations
for embedded multimedia applications: impact on power and
performance. InProc. ISCA Power-Driven Microarchitecture
Workshop 1998.

