
End-User Programming in the Wild: A Field Study of CoScripter Scripts

Christopher Bogart
Oregon State

University

Margaret Burnett
Oregon State

University

Allen Cypher
IBM Almaden

Research

Christopher Scaffidi
Carnegie Mellon

University
{bogart, burnett}@eecs.oregonstate.edu, acypher@us.ibm.com, cscaffid@cs.cmu.edu

Abstract

Though a new class of languages has emerged to
enable end users to create their own web applications,
little is known about how end-user programmers actu-
ally use such languages in the real world. In this pa-
per, we report a field study on over 1400 scripts col-
lected from the internet which were created by early
adopters of CoScripter, a web macro programming-by-
demonstration language. We contrast these internet
scripts with those written by users inside IBM, and de-
scribe script usage and re-usage patterns, features
used, and users' clever workarounds for features not
present in the language. The results show how users
grapple with such programming notions as repetition,
generalization, and reuse, sometimes inventing their
own devices for these. Finally, we discuss the many
scripts we found with social implications, whose pur-
poses were to circumvent intended rules, regulations,
and usage norm assumptions of a number of web sites.

1. Introduction

What kinds of programs do end-user programmers
write in the real world? Although there is significant
literature on end-user programming in controlled con-
ditions and some literature on real-world end-user pro-
gramming based upon surveys and interviews (e.g.,
[9][10][11][12][13][16]), there is little information on
real-world programs themselves, especially in the
emerging paradigm of web scripting.

Web scripting (sometimes called creating “web
macros”) is a relatively new way of accomplishing re-
petitive common tasks in a web browser. For example,
consider the task of reserving a shuttle to the airport—
going to the shuttle service’s web site, navigating to
reservations for your city’s service, typing your name,
contact information, credit card information, and flight
time, and clicking the submit button, then repeating the
same process for the next trip. This task requires
mostly the same typing and navigation for every trip.
Worse, people sometimes may not remember all the
information needed or how to navigate through a web
site to accomplish the task.

Web macro tools address these problems by allow-

ing people to record and replay actions, saving key-
strokes and mouse-clicks. Macros remove the need to
remember detailed information and tricky navigation
sequences. Further, users can help other users with the
same needs if macros are publicly available.

Delivering benefits like these are the goals of web
scripting languages such as IBM’s CoScripter [6]. This
web macro recorder incorporates (1) sharing and reuse
of macros via a wiki that is tightly integrated into the
programming environment and (2) a simple variable
substitution scheme to facilitate reuse by others (e.g.,
automatically substituting each user’s own name or
phone number where required in a script).

But what tasks do people really automate with
scripts? Do they share and extend others’ scripts? Very
little is known about people’s uses of such languages
in the real world.

To fill this knowledge gap, we conducted a field
study on early adopters of CoScripter, investigating
1445 CoScripter scripts collected from the internet at
large and contrasting them with 665 scripts from IBM
users. Our research questions were:

(1) What kinds of scripts do end-user programmers
create? For example, are scripts for work or for play?
Oriented toward the author’s needs or for other users’?
We focus on “what kinds” in Section 4.

(2) How were the scripts designed? For example,
what kinds of constructs did their creators use? Did
they use abstraction? Did they build upon others’
scripts? We focus on “how” in Section 5.

(3) How does scripting potentially interact with as-
sumptions of the web society? We focus on this issue in
Section 6.

2. Background and Related Work

2.1 Background: CoScripter

CoScripter enables end-user programmers to dem-
onstrate actions in the Firefox browser, then saves ac-
tions as a “script” on a wiki. Anyone who has installed
the CoScripter browser plug-in can run the script to
replay the actions. In addition, anyone can add com-
ments to a script’s wiki page and rate the script’s use-
fulness. By default, all scripts are public and can be

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Germany, September 2008, 39-46.

used and modified by others, but a script’s creator
can mark it “private” so that it is not visible to oth-
ers. Scripts are saved in an English-like syntax,
with no additional hidden information about the
actions (Figure 1). Users can edit these scripts in
this syntax, which CoScripter directly parses and
executes. For human readability, CoScripter refers
to buttons, links, and other web page elements in
terms of nearby text (a technique pioneered in
Chickenfoot [1]).

It would be inconvenient to share scripts if they
always used the creator’s personal data (such as
name and address), so CoScripter has a Personal
Database where each user can supply personal val-
ues for variables. For example, the second action
in Figure 1 uses a variable, which appears after the
keyword “your”. At runtime, CoScripter automati-
cally substitutes the user’s personal value. If the
user’s database lacked a personal value for this
variable, CoScripter would pause at runtime for the
user to enter a value before resuming execution.

2.2 Related Work

Researchers have studied creation, sharing, and
evolution of professional programmers’ code (for a
survey, see [4]). We aim to broaden this understanding
to cover end-user programmers’ scripts in the real
world.

CoScripter is not the only web scripting tool, but it
is the first to feature ready access to numerous publicly
accessible end-user scripts. This accessibility is due to
integrating a programming-by-demonstration (PBD)
interface with a wiki. While other web scripting tools
have a PBD interface as well as features not found in
CoScripter (such as assertions [3], screen scraping fea-
tures [2], and email integration [18]), they lack a public
script repository. Conversely, Greasemonkey [8] and
Chickenfoot [1] have repositories but lack a PBD inter-
face, requiring programmers to write JavaScript. Thus,
their repositories mostly contain scripts created by rela-
tively well-trained (often professional) programmers.

There is some end-user programming research into
end users’ real-world practices, conducted primarily
through interviews and surveys. For example, surveys
identified web application features that should be pos-
sible to implement with web programming tools [11]
and the practices of informal web developers [10]. In-
terviews of scientists revealed that they place little
value in creating software, yet they do it anyway out of
necessity [15]. Interviews of teacher end-user pro-
grammers showed that programming was facilitated
when they could reuse code (either via copy-and-paste
or by incremental changes to an existing program) and
by the presence of many built-in language functions,

but programming was inhibited when tools offered
many features not relevant to a teacher’s task [16]. In-
terviews of “domestic” end users highlighted two goals
for programming household appliances: to make some-
thing happen in the future, and to facilitate repetition of
a task [12]. A survey of end-user programmers found
that abstractions in spreadsheets, web applications, and
other programming domains fell into three clusters—
PBD macros, imperative functions, and linked data
structures—such that people with a propensity to create
one abstraction had a propensity to create other ab-
stractions in the same cluster (even across different
programming domains) [13].

From both an abstraction and a power perspective,
the web scripting context that we consider differs from
the contexts of these prior studies. CoScripter supports
only two abstractions in the clusters mentioned above:
the scripts themselves are PBD macros, and the Per-
sonal Database is a minimalist data structure. CoScrip-
ter does not yet support conditionals, callable func-
tions, loops, or structured data—all of which are fea-
tures that have been identified as important for auto-
mating common tasks of browser end users [14]. Given
these novel design decisions, many open questions
arise, such as what useful tasks can still be automated,
what abstractions those scripts use, whether and how
scripts are successfully reused, and how scripts evolve
over time, with or without multiple users’ involvement.

The work closest to our own, a series of 26 inter-
views of CoScripter end-user programmers inside IBM

Figure 1. The currently executing step of the “Check Flight
Status” script (left) causes CoScripter to highlight the corre-
sponding textbox (right) and then paste the flight number from
the user’s Personal Database (lower left).

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Germany, September 2008, to appear.

[5], addressed user motivations and experiences with
CoScripter. Although their research used log data on
601 users to summarize usage, it did not analyze con-
tent or characteristics of the scripts. Our study builds
upon prior findings in three ways. First, it investigates
what was actually in the scripts that users chose to cre-
ate. Second, it analyzes scripts created by people on the
internet at large (not just IBM employees), thus giving
a picture of script creation by a large and varied popu-
lation of users. Third, it is the first large-scale field
study on end-user web scripting, including over 2000
scripts harvested from the real world.

3. Methodology

Our investigation method was the case study, which
is the right choice when asking “how” questions about
a contemporary set of events over which the investiga-
tor has little or no control [17]. Our purpose was to re-
veal previously unknown details of real-world web
scripts, as well as key phenomena that influenced the
creation of scripts. Since our goal was to discover and
report key phenomena, not to test hypotheses, it would
be inappropriate to report inferential statistics, and we
do not do so. Instead, we present quantitative summary
(non-inferential) statistics and qualitative data.

We gathered 1445 public web scripts and their edit
histories (3016 versions) from the public repository on
the internet as of Dec. 18, 2007, and the same informa-
tion for the 665 scripts on the internal IBM intranet site
as of Jan. 7, 2008. (Users could also create private
scripts that were not available for our analysis.)

We wrote tools to analyze scripts for attributes such
as use of variables and comments. In addition, since
some script attributes were difficult to detect automati-

cally, such as the purpose of the script, we hand-coded
the script attributes shown in Table 1 for 120 scripts.

Our hand-coding methodology was as follows. As
described in Section 4, the scripts naturally divided
into three groups in each repository. After excluding
scripts written by authors of this paper and one prolific
CoScripter administrator, we randomly chose 20
scripts from each internet group and 20 from each IBM
group. One researcher then coded these 120 scripts. To
evaluate the code set’s robustness and the consistency
of its application, a second researcher independently
coded a subset (half internet, half IBM). Agreement
was 70%-90% for each field, indicating that the code
set was reasonably robust and reliably applied.

4. What Kinds of Scripts?

When we collected scripts, the internet site had been
available for 6 months, whereas the IBM site had been
available for 18 months. Even so, the internet site had
more than twice as many scripts and eight times as
many authors as the IBM site did (Table 2).

4.1 Internet Scripts and IBM Scripts

Since IBM users had earlier access and perhaps dif-
ferent motivations for using CoScripter, we suspected
that their scripts might differ from internet users’
scripts. Indeed, internet users who wrote scripts created
fewer per person (just over 2/person) than IBM scrip-
ters did (about 6/person). In addition, internet users’
scripts automated fewer work-focused tasks than those
of IBM users.

In the internet repository, some of the most fre-
quently executed scripts involved lotteries and games
(Figure 2). Others dealt with consumer web sites like
amazon.com; social networking sites like Facebook;
classified advertising sites; banking and stock quote
sites; bus, train, and airline scheduling and ticketing;
sports and entertainment; libraries; job searching;
weather and news sites; and generic search engines like
Google.

Hand-coded script attributes
Data-intensive: Has at least one data item hard-

coded in the script.
Bending the Rules: Does something that circum-

vents a website designer’s intentions.
Self: Intranet URL, No URL, or hard-coded data.
Everyone: Not Self.
Login Needed: Would an anonymous user have to

register somewhere to get through this script?
Browser Fill-in Assumed: Script logs in by button

press without filling in user name.
Login Assumed: Script assumes a logged in session.
URL Assumed: Did not start with “go to <URL>”
Intranet Assumed: Goes to a URL not accessible to

most users.
Repetition: Contains the same code multiple times.
Set: Performs the same task with different parame-

ters each time.
Table 1: The subset of our codes pertinent to this paper.

 Internet IBM
Script Authors 2510 301
% authors with
public scripts

31% 38%

Scripts:
 Public

1445 (26%)

665 (37%)

 Private 4028 1117
 Total 5474 1782
Runs (Public) 13152 5247

Table 2: The internet repository was larger, newer, and
had fewer scripts per author than the IBM repository.

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Germany, September 2008, to appear.

In the IBM repository, scripts encompassed some of
the same domains as the internet scripts, but work-
related tasks dominated the scripts, many of which
automated interactions with IBM’s extensive intranet
system. Many scripts automated VOIP telephony func-
tions, such as call forwarding and checking messages.
Others worked with collaboration tools like wikis and
document sharing sites; corporate infrastructure (cafe-
teria menus, maintenance requests, employee admini-
stration); help desk; administrative support for man-
agement functions; technical education (accessing on-
line courses); and conference registration.

Leshed et al.’s early study of IBM users conjectured
that needs and use patterns would be different outside
IBM [5], and our data confirm this conjecture. An im-
plication of these differences for end-user program-
ming researchers is that early data collection within the
researchers' own institution may not be externally valid
if the ultimate target audience is outside the institution.

Consequently, for the remainder of this paper, we
will mainly focus on the internet repository and only
mention the IBM repository when there are interesting
examples or contrasts.

4.2 Popularity of Usage

In the internet repository, an 80/20 rule applied:
16% of the scripts (211) accounted for 80% of the
script runs. Figure 3 plots the average number of runs
of a script per user as a function of the number of dif-
ferent users of the script. The values hug the axes, ena-
bling us to identify three groups of scripts for analysis
purposes. We classify scripts as “ManyUsers” if they
were run by more than three users. Note that these
scripts tend to have few runs per user. Of the remaining
scripts—which had three or fewer users—we classify
as "ManyRuns" those scripts that averaged six or more
runs per user. Note that most of these scripts had few
users. We classify the remaining scripts as “FewUs-
ers/FewRuns”. In both repositories, 9-13% of scripts
were ManyUsers, 7% were ManyRuns, and 80-84%
were FewUsers/FewRuns (Table 3).

As discussed in Section 3, these three groups

formed the structure for sampling the 120 scripts that
we hand-coded. The remainder of this paper
characterizes most findings in terms of these groups.

4.3 Me-Oriented or Everyone-Oriented?

We coded our random sample of 120 scripts in
terms of potential audience: Self or Everyone. Figure 4
shows the results for the 60 in the internet group. Self
scripts were those containing hard-coded data, unspeci-
fied URLs, or URLs not reachable by most repository
users. Scripts not coded Self were coded Everyone.
(Two of the scripts in this random sample happened to
be empty files; we left them in the sample but coded
them as “blank”). Figure 2 is an example of a Self
script that contains hard-coded data.

CoScripter’s formative work categorized the needs
of surveyed users as “Sharing how-to knowledge” or
“Automating frequent tasks” [5]. Although we do not
know script authors’ intents, Self scripts were at least
consistent with the latter category. As Figure 4 shows,
about half (27/60) of the scripts were oriented toward
the author’s own use, and the other half (31/60) may
have been more convenient for others to use.

Not surprisingly, the scripts most widely used by
people other than the original author were those with-
out the Self-oriented attributes. Still, for scripts with
the Self-oriented attributes, many of them stood the

• click the “Lager” button
• enter “750000” into the “0,01 ¢” textbox
• enter “0,05” into the first “Einzelpreis” textbox
• click the “ versenden “ button
• click the “Die Kunden können von größeren Angebo-

ten auch Teilmengen kaufen.” button
• click the “Lager” button
• enter “750000” into the “0,01 ¢” textbox
 …

Figure 2: The beginning of a repetition-heavy script for a
German-language electric utility simulation game. The
last five lines repeat 23 more times.

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400

Distinct Users

R
u

n
s
/
U

s
e
r
s

0

5

10

15

20

0 10 20 30 40

M anyUsers

M
a
n
y
R

u
n
s

F

e
w

U
s
e
rs

/

F
e
w

R
u

n
s

Figure 3: Most scripts hug the axes: run few times by
many users, many times by few users, or few times at all.

 Many

Users
FewUsers
FewRuns

Many
Runs

Total

Internet 9%
(131)

84%
(1208)

7%
(106)

100%
(1445)

IBM 13%
(87)

80%
(529)

7%
(49)

100%
(665)

Table 3: Counts of scripts in each group on each site.

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Germany, September 2008, to appear.

test of time and were run many times by the script’s
author (rightmost pie in Figure 4).

Note also that seven of the ManyUsers scripts in our
sample were Self scripts. Designers of programming
environments have sometimes expressed a vision to see
end-user programmers reusing one another’s code.
These scripts suggest that the ability to easily make
scripts available to others, even without explicitly gen-
eralizing them, can indeed lead to serendipitous reuse.

5. How the Scripts Were Programmed

5.1 How Users Did Repetition

CoScripter has no repetition constructs. Yet, users
found ways to accomplish repetition. One way they did
this was via copy-paste, duplicating code the desired
number of times. Such sequences were common; about
17% of the 1445 internet scripts had at least one dupli-
cate line, and in our coded sample of 120 scripts, 6
contained repetitive sequences. For example, one script
earned a user points in a Facebook game by clicking a
button hundreds of times to view a random profile. The
script’s version history shows that the user first tried to
end the script with “repeat” and then “go to start” (both
commands unknown to CoScripter), before settling on
copy-paste. Figure 2 shows another example.

A different form of repetition was set-based—
performing the same operation on different items in a
set. For example, one game script shipped identical
goods from five different outposts. To create such a
script, a user could use copy-paste to perform the same
actions five times, and then edit each copy to select a
different outpost via the game site’s drop-down widget.

Although the scripts described above might have
been simpler if the language had “repeat” and
“foreach” constructs, another set-based script that we
observed would be harder to simplify. This script ini-
tially updated the user’s Facebook status (e.g., by post-
ing “working” or “watching tv” to the server). Later,
other users added code to also update status on two
other social networking sites. This is repetition
(“foreach site, update status”), but the code to update
each site differed considerably, since the different sites

have different buttons to click on. In this situation,
“simplifying” the code (rolling it into a loop) would
require significant forms of abstraction, such as objects
with different method implementations (e.g., “foreach
ISocialSite s, s.update(‘watching tv’) ”).

Finally, one user figured out a way to do recursion,
and wrote about in the CoScripter online forum:

I find a workaround how to force it to automatically start
over. Just direct it to your script id, for example

go to "http://services.alphaworks.ibm.com/
 coscripter/browse/script/YOUR_SCRIPT_ID"

Then click the run link on the website and it will start
everything from the scratch.

Although our study period did not include any
scripts using this technique, three scripts later ap-
peared, ended with “go to” followed by a specially
formatted URL that CoScripter interprets to immedi-
ately load and run a script. The scripters may have
stumbled on this possibility by hovering over the Run
button on their script’s wiki page, and trying out the
unusual URL that is displayed in the browser’s status
bar. In all three cases, the construct was used to re-
peatedly click on buttons in games. Since there are no
conditionals in CoScripter, these users would pre-
sumably have to terminate execution by hand, such as
by clicking Stop, or closing the CoScripter window.

Other researchers have noted that web macros for
many tasks would require iteration [14]. The preva-
lence of repetition in our data offers further evidence of
the need for repetition constructs in web macro lan-
guages. It also shows evidence of the power of simplic-
ity that allowed end users to find ways to do repetition
even without such constructs.

5.2 How Users Did Reuse

CoScripter supports variables. While recording a
script, whenever the user types a value that matches
data in the Personal Database, CoScripter automati-
cally replaces that value in the script with a variable.
The Personal Database is the way variables vary from
user to user. Within IBM, the Personal Database is
automatically expanded to include the user’s
“BluePages” information, an internal corporate phone
book. Perhaps that helps explain why variables for
names, phone numbers, email addresses, office loca-
tions and the like abounded in the IBM scripts. But
such variables were also fairly common in the internet
repository, where each user's Personal Database had to
be populated by hand. Of course, a user can add vari-
ables that are not really “personal” attributes, and some
scripts relied on that. Figure 5 shows such a script.
Overall, 20% of scripts referenced the Personal Data-
base, and this greatly promoted reuse: 40% of these
scripts were executed by multiple people.

13

7

0

ManyUsers

9

9

2

FewUsers/
FewRuns

5

15

0

ManyRuns

Figure 4: Coded scripts by potential audience, internet
repository. Self: dark; Everyone: light. (Blank scripts in
FewRuns: white.) Self scripts predominate in Ma-
nyRuns, but are less common in ManyUsers.

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Germany, September 2008, to appear.

Not everyone used variables for their data. In many
cases, a user initially created a script with a hard-coded
value and then went back and generalized the script to
reference the Personal Database. But sometimes when
users encountered a script with a hard-coded value dif-
ferent from the value they needed, they chose to simply
edit the hard-coded value. Figure 6 shows that this type
of edit was fairly common in the ManyRuns category;
overall, it accounted for about 9% of all edits. Interest-
ingly, in the ManyUsers scripts, more than half of
these changes were made by users other than the
author, showing that they were able to reuse the script
despite the hard-coded values.

We saw a preference for editing hard-coded values
especially often with the parameters of real estate
searches: price range, number of bedrooms, zip code,
etc. The program text in these cases is probably as easy
to change as the Personal Database, and no variable
names need to be invented. The values have clear se-
mantics because of the direct juxtaposition to their use.
Figure 7 shows an example; the script would hardly be
clearer by introducing variable references.

Another occasion for hard-coding values was when
a single user wanted to run the same script with differ-
ent hard-to-remember values at different times. To
handle this, some users created multiple copies of a
script and then edited different hard-coded values into
each copy. For example, IBM user U3 (we have
anonymized user names in this paper) created a set of
scripts, one for each type of printer toner cartridge to
be purchased. The scripts differed only in the part
numbers and prices entered into the form.

One of the authors (Cypher) handled a similar case
personally by having multiple variables with the same
name in his Personal Database, and shifting their order
before running a script, knowing that the first value
encountered would be used. IBM also experimented
with the addition of a special feature for importing per-
sonal data. It was used by managers of summer interns
to run scripts that filled in administrative forms with
data about an intern.

In a wiki context, where many users share scripts,
edits can cause problems when one user’s edits do not
suit the needs of other users. We know from Leshed’s
interview study that some CoScripter users did not

even realize that their edits would replace the original
script for all users [5]. Our data revealed that site ad-
ministrators repeatedly had to roll back edits to a cer-
tain tutorial script, which searched for “koala” on Goo-
gle Images. Users’ edits included pointing the script to
other search engines (such as internationalized versions
of Google) and changing the search term to other
words such as “bikini”.

5.3 Context: Implicit Preconditions in Scripts

Scripts often reflected assumptions about the
browser’s state prior to script execution. Some com-
mon preconditions we encountered were: the browser
being already at a certain URL; the user having access
to some non-public URL; the user being already regis-
tered to use a site; a cookie being set to indicate that
the user had already logged into a site; or the browser
having been configured to pre-fill form login and
password fields. These assumptions were usually im-
plicit, though a few users did express assumptions in
comments inside scripts.

For example, to execute the script in Figure 2, the
browser has to be at the right URL before execution,
the user must be registered with the site, and the user
must have a game in progress.

It was common for a script’s first version to include
login actions, followed in a few minutes by a revision
of the script which assumes that the user is logged in.
Apparently, users notice that the script’s login actions
stop working the very first time they test it, so they de-

Make sure you have a “PubMedKey =
my_pet_biology_subject” entry in your “Personal Da-
tabase” (bottom left)

 • go to “http://www.ncbi.nlm.nih.gov/sites/entrez?
db=PubMed&itool=toolbar”

 • enter your “PubMedKey” in the “for” textbox
 • click the “Go” button

Figure 5: A script comment (unbulleted line) instructs the
user to add a Personal Database variable, which the
script then uses in the second command.

3.51
4.39

17.29

5.71

0.43 0.00
0

5

10

15

20

ManyUsers FewRuns ManyRuns

%
 o

f
s
c
ri

p
t

e
d

it
s

Figure 6: Percent of all script edits that were value edits
by the script’s author (left bar) or by others (right bar).

• go to "http://www.rentometer.com/"
• enter "homestead road" into the "Rental Address"

textbox
• enter "95014" into the "City & State, or Zip" textbox
• enter "1500" into the "Current Monthly Rent ($)"

textbox
• select "2" from the "Bedrooms"'s "Bedrooms" listbox
• select "50+" from the "Units in Building" listbox
• click the "Units in Building" button

Figure 7: A script with hard-coded values.

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Germany, September 2008, to appear.

lete the script’s login actions. The problem with this
fix is that the script fails the next day, after the session
has expired.

Unlike traditional programs that “start from
scratch”, CoScripter scripts with preconditions can be
characterized as meta-programs that manipulate other
running programs. This is a powerful capability, but it
requires the user to be aware of the exact set-up needed
for the script to run properly. If the user’s memory or
understanding of the preconditions is imperfect, then
the script may execute in unanticipated ways. Guarding
against failure may call for a mechanism to make pre-
conditions explicit, perhaps by adapting existing re-
search on supporting assertions in web macros [3] to
cover the kinds of preconditions that we observed.

5.4 Mixed-Initiative Execution

CoScripter has an affordance that is unusual in end-
user programming: mixed-initiative programming. In-
structions with the word “you” in them are not parsed
further; instead, control is handed to the user, who can
perform any desired actions before continuing by click-
ing the “Run” button.

We saw the “you” keyword serving four different
functions: conditional execution, pausing for timing
reasons, prompting for data to be provided, and signal-
ing an explicit need for human intelligence.

Conditional execution is needed when a script must
run under varying conditions, such as sometimes being
logged in and sometimes not. For example, user U4
inside IBM included the action “you may have to sign
in with your intranet id and password and click Sub-
mit”. This causes CoScripter to pause, so the user can
take action and then click the “Run” button to resume.

Timing reasons caused some users to pause scripts.
For example, U6 used “you” lines to stop after each
slide in an online presentation. As another example, we
saw multiple cases where scriptwriters tried to handle
the fact that CoScripter does not always wait until a
page is done loading. They tried lines such as “wait 10
seconds” (not recognizable by CoScripter). User U5,
needing a pause, tried “javascript.sleep(1000)”, which
CoScripter did not understand, and after some experi-
mentation, ended up with simply “you wait”.

Some scriptwriters may have wished for a way to
prompt users for input, and used “you” to fill the gap.
“You” could be used to let the user fill in a web form
directly, when the scripter wanted to avoid hard-coding
values or depending on the presence of Personal Data-
base entries.

Regarding explicit need for human intelligence, an
internal IBM script avoided ethical problems by insert-
ing “you” before clicking to accept a legal agreement:
“You click the first "This update form is electronically

signed when you press" button”. Similarly, a script to
pay traffic fines in London allayed users’ potential lack
of trust in the script with this final line: “you click the
"Pay Now" button (To allow a review)”.

The “you” feature eases the learning curve for the
end-user programmer, giving the script author a way to
write useful scripts even when some portions seem too
difficult to write. Mixed-initiative execution also en-
ables incremental development and use of a script be-
fore the task is fully automated. Yet the feature was
not always used when it would have offered a clean
solution, despite the fact that it is prominently featured
in the CoScripter site. Perhaps this was due to the fea-
ture’s novelty to many users, or due to a preconception
that programs ought to always run to completion.

6. Changing the Rules

Web sites are designed around a variety of assump-
tions about how the site will be used. In many cases,
these assumptions reflect an implicit social contract or
other general rules about the site. For instance, sites
that rely on advertising revenue assume that visitors
will see and click on ads. Programs such as the Firefox
“Adblock Plus” and “Platypus” extensions invalidate
this assumption by making it easy for users to remove
advertisements. Similarly, the web-scraping software
that powers many mashups (e.g., systems from Dapper,
Lixto and Kapow) automates the process of clipping
data from sites, without having a person ever look at
the pages that provide that data.

CoScripter macros can invalidate the assumption
that users will manually click on the buttons and links
on a page. In our sample of 60 public repository
scripts, 18% of them were designed to circumvent this
assumption or others underlying web sites.

For example, user U9 created a script called
“Automated Click for Charity”, which goes to several
sites that donate small amounts of money to different
charities whenever pages are visited, as a reward for
viewing the advertisements. User U10 created scripts
for playing lottery sites that work on a similar model to
the charity sites, but instead of donating to charity, a
portion of the advertising revenue goes into a pot that
site visitors can win. An even more egregious script
logs into a website many times under different user-
names to vote for user U11 in a “Bachelor Search”
contest (with a significant monetary prize). At present,
this user is winning the contest by a large margin.

As a final example of changing the rules, one IBM
script changes a password four times, thereby circum-
venting an IBM rule that disallows the reuse of any of
an employee’s last five passwords. Heretofore, chang-
ing a password four times has been sufficiently oner-
ous that it is not worth the effort to circumvent this

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Germany, September 2008, to appear.

rule. But CoScripter changes this underlying assumed
safeguard because it changes the cost/benefit ratio.

There is another factor at work, too. Unlike previ-
ous web scripting tools, CoScripter provides a reposi-
tory for sharing scripts. In the past, when sophisticated
hackers produced “warez” (configurable code for hack-
ing web sites or launching denial-of-service attacks),
less sophisticated “script kiddies” who used warez
needed at least some minimal programming skills [7].
By unifying an end-user scripting framework with a
shared repository, systems like CoScripter may force a
change in the assumptions underlying web site design.

7. Conclusions

Our field study of end-user programmers’ web mac-
ros has revealed what kinds of web scripts exist in the
real world and how these programs were designed. We
unearthed a variety of phenomena ranging from the
staid to the inventive to the mischievous, yielding the
following conclusions:

Even if a programming language lacks basic con-
structs like conditionals and callable functions, it still
can be useful. CoScripter does not yet support all re-
quirements needed for every common browser automa-
tion task [14], but it provides enough value that many
users keep creating and executing scripts. There is a
role in the world for non-Turing-complete languages.

End-user programmers can effectively share pro-
grams anonymously. Prior research found that end-user
programmers often share programs within specific or-
ganizational settings [15][16]. Our study generalizes
this finding, as the internet CoScripter site’s users had
no organizational relationships with one another, yet
they still had enough needs in common that they could
make use of one another’s scripts.

The balance of power on the web continues to shift
toward site users, and away from site designers. For
years, only relatively sophisticated programmers have
had the ability to “mashup” information from web
sites, reusing data for purposes that are not sponsored
by site designers. Our study shows that CoScripter en-
ables even end-user programmers to undermine the as-
sumptions that undergird the web as we know it.

This is an exciting time for end-user programming
research. The conclusions above hint at many outstand-
ing research problems—such as how to help macro
authors benefit from the web without creating disincen-
tives for site designers to keep creating new site con-
tent—and they highlight an unparalleled opportunity to
directly affect millions of lives with research.

Acknowledgements

We thank Sam Adams and Rachel Bellamy for

helpful discussions about this research. This work was
supported by the EUSES Consortium via NSF ITR-
0325273, by NSF grants CCF-0438929 and CCF-
0613823, and by an IBM International Faculty Award.

References

[1] M. Bolin, P. Rha and R. Miller. Automation and Cus-
tomization of Rendered Web Pages. Proc. 18th Annual Symp.
on User Interface Software and Technology, 2005, 163-172.
[2] iOpus corporate website, www.iopus.com
[3] A. Koesnandar. Building Dependable Web Macros Us-
ing Robofox, Master’s Thesis, Computer Science and Engi-
neering Dept., Univ. Nebraska - Lincoln, 2007.
[4] C. Krueger. Software Reuse. ACM Computing Surveys
(CSUR), Vol. 24, No. 2, 1992, 131-183.
[5] G. Leshed, et al. CoScripter: Automating and Sharing
How-To Knowledge in the Enterprise, Conf. Human Factors
in Computing Systems, 2008, to appear.
[6] G. Little, et al. Koala: Capture, Share, Automate, Per-
sonalize Business Processes on the Web, Conf. Human Fac-
tors in Computing Systems, 2007, 943-946.
[7] J. McDermott and C. Fox. Using Abuse Case Models
for Security Requirements Analysis. 15th Annual Computer
Security Applications Conf., 1999, 55-64.
[8] N. McFarlane. Fixing Web Sites with Greasemonkey.
Linux Journal, Vol. 2005, No. 138, 2005.
[9] B. Nardi. A Small Matter of Programming: Perspectives
on End-User Computing, MIT Press, 1993.
[10] M.B. Rosson, J. Ballin and J. Rode. Who, What and
How? A Survey of Informal and Professional Web Develop-
ers, Symp. Visual Lang. and Human-Centric Computing,
2005, 199-206.
[11] J. Rode and M.B. Rosson, Programming at Runtime:
Requirements and Paradigms for Nonprogrammer Web Ap-
plication Development, Symp. Human-Centric Computing
Languages and Environments, 2003, 23-30.
[12] J. Rode, E. Toye and A. Blackwell. The Fuzzy Felt Eth-
nography - Understanding the Programming Patterns of Do-
mestic Appliances. J. Personal and Ubiquitous Computing,
Vol. 8, No. 2, 2004, 161-176.
[13] C. Scaffidi, et al. Dimensions Characterizing Program-
ming Feature Usage by Information Workers. Symp. Visual
Lang. and Human-Centric Computing, 2006, 59-62.
[14] C. Scaffidi, et al. Scenario-Based Requirements for Web
Macro Tools. Symp. Visual Lang. and Human-Centric Com-
puting, 2007, 197-204.
[15] J. Segal. Some Problems of Professional End User De-
velopers, Symp. Visual Lang. and Human-Centric Comput-
ing, 2007, 111-118.
[16] S. Wiedenbeck, Facilitators and Inhibitors of End-User
Development by Teachers in a School Environment, Symp.
Visual Lang. and Human-Centric Computing, 2005, 215-222.
[17] R. Yin, Case Study Research: Design and Methods,
Sage Publications, 2003.
[18] J. Zimmerman, et al. VIO: A Mixed-Initiative Approach
to Learning and Automating Procedural Update Tasks, Conf.
Human Factors in Computing Systems, 2007, 1445-1454.

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2008), Herrsching am Ammersee, Germany, September 2008, to appear.

