
 
Figure 1 - A Euclase application with a single object, showing 
design and code views. The event mouse.up() has just happened. 
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ABSTRACT 
Interactive behaviors (the parts of an application that re-
spond to user input) are difficult for designers to author. 
Euclase provides a new programming paradigm that sup-
ports the features of interactive behaviors that make them 
difficult to write in traditional programming languages. By 
combining the more appropriate features of spreadsheets, 
event-based programming, state diagrams, constraints, and 
live prototyping, Euclase concisely expresses the kinds of 
custom behaviors that designers want to create. A prelimi-
nary usability evaluation indicates that Euclase has promise. 
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INTRODUCTION 
Previous research has shown that while interaction design-
ers are able to program the look of their applications, they 
have trouble programming the feel [4]. The feel of an appli-
cation is specified by its interactive behaviors, which we 
define to be the changes of an application’s user interface in 
response to user input. Whereas most tools for defining 
interactive behaviors have focused on adding widgets on 
top of existing languages, our goal is to improve the under-
lying programming paradigm, in order to allow designers to 
author their own unique behaviors, and to be able to cus-
tomize the widgets in the library. 

Design Process 
In designing our paradigm, we first set out to find out what 
are the issues when creating interactive behaviors [4], 
which revealed that designers want to author custom behav-
iors, but are often stymied by existing tools, and the need to 

transfer their ideas to developers. We then performed two 
participatory design workshops with interaction designers 
and programmers [5], using several examples of interactive 
behaviors that are difficult to program in discovered that 
designers use gestures, context, and analogies when trying 
to express their designs to developers. Using these results, 
we formulated a new programming paradigm to support the 
kinds of behaviors that we observed designers needing. We 
also created a prototype of a programming environment 
using our paradigm to evaluate its feasibility and performed 
a preliminary evaluation of its learnability. We call our 
paradigm and environment Euclase, short for End User 
Centered Language, APIs, System, and Environment (see 
Figure 1). 

INTERACTIVE BEHAVIORS 
In designing Euclase, we identified four primary features of 
interactive behaviors, the first three of which tend to make 
them difficult to program in conventional languages: 

1. Interactive behaviors are state dependent. A user action 
in one state often has a different meaning than that same 
user action in another state. Furthermore, there are often 
many different states in a program, with different parts 
of the program being in different states at the same time. 
For example, a drawing editor might be in drawing-
rectangle mode, while the user is operating an independ-
ent button, which is in interim-selected state.  

 



 

2. Interactive behaviors are also often constraint-heavy. 
There are constraints between the view of an application 
and its model, and constraints among graphical objects 
that define the layout of the application. For example, 
constraints might be used to ensure that the text of a but-
ton is centered or that two buttons are adjacent. Fur-
thermore, the appropriate constraints change based on 
the current state. When the user is operating a color 
widget, for example, the color of a selected object is set 
to be the widget’s color, but when changing which ob-
jects are selected, then the color widget is set to be the 
color of the newly selected object. 

3. Animations, which are an excellent means of improving 
user understanding of program behavior, are often inte-
grated with interactive behaviors. This can increase the 
complexity of the interactive behavior, as animation du-
ration and interruption now has to be taken into account 
when writing the code for the interactive behavior. 

4. Finally, interactive behaviors are usually event driven. 
This makes the event-action callback paradigm popular 
among languages that are intended for writing interac-
tive applications, including Javascript and ActionScript. 

A programming language made for interactive behaviors 
must be able to support these features effectively. In addi-
tion, we found from our participatory design workshops [5] 
that a tool to create interactive applications must also be 
sufficiently flexible to support nuanced design require-
ments, since designers want to have fine-grain control over 
many aspects of the timing, movement and behavior. De-
signers also need support for reflection-in-action, the ability 
to test and evaluate what one is creating while in the proc-
ess of creating it. 

LANGUAGE & ENVIRONMENT DESIGN 
To support reflection-in-action, Euclase (shown in Figure 1) 
has two views, like Dreamweaver and other HTML editors. 
On the top is the “design” view, where users may see and 
interact with their application. Below this is the “code” 
view where users write their applications. In our prototype, 
there is no explicit compilation step – the design view dy-
namically changes its appearance and behavior as Euclase 
objects are created, deleted, and modified. 

Objects 
Euclase objects use a hierarchical prototype-instance 
model. Object is the main object type, Graphical	
  Object 
is a type that extends Object and also creates a graphical 
object in the design view. Graphical	
  Object is extended 
by Rectangle, Ellipse, Image, etc. Each of these objects 
is represented in the code view as an “object sheet.” Every 
object sheet shows the object’s type, optional name, proper-
ties, and events. 

Properties 
When an object is first created in Euclase, it looks like a 
standard property sheet, which has a row for each property 

and its current value. The default properties that are created 
depend on the type of object. A standard object (type Ob-­‐
ject), for example, has no properties by default, whereas a 
generic Graphical	
  Object by default has fields for hori-
zontal and vertical location (left and top respectively), 
width, height, and a draw function whose default value 
depends on the type of graphical object, but may be over-
ridden, if necessary, to create a custom graphical object. 

Constraints 
The value for a property can be a constant, like 50 for left, 
or “red” for color. Alternatively, the value can be a con-
straint, which recalculates the value based on a formula that 
uses the properties of this or other objects. The constraint 
solver in Euclase is based on the Amulet solver [8], and 
supports one-way constraints with indirection (the target 
object can be itself be calculated by a constraint, as in 
this.object-­‐at-­‐left.color). 

Currently, we use a Javascript-like language for the syntax 
of the constraints, to support full flexibility of expression. 
In the future, we may explore a new syntax based on inves-
tigations of what designers find more natural, guided by 
commonalities in how they describe program behavior [6]. 

Events 
Whereas object properties are represented by rows in the 
object sheet, events are represented as columns. The first 
column, immediately to the right of the property names, 
lists the current value for every property. Event columns are 
to the right of the current value column. 
 
Every event has three parts: an optional “guard”, a “trig-
ger,” and a column of property values. The trigger is the 
event that occurs, such as a mouse up, a mouse down over a 
particular object, etc. Triggers can also be Boolean expres-
sions like this.x	
  >	
  500, that fire any time the value of the 
expression switches from false to true. A guard is a con-
ditional expression that enables or disables the event. 
Guards are intended to allow the object to have different 
responses in different application or object states. An event 
is “activated” when the guard evaluates to true and the 
trigger is fired. 
 
To begin, there is a special event called “INIT,” short for 
initialization. Every object has an INIT event. The cells in 
its value column represent the default values for every 
property in the object sheet (the values before any event is 
activated). Once an event is activated, every property takes 
on the values of the cells in the event’s value column. These 
cells might have static values (e.g. 3, “blue”, 5+2, etc.), 
constraints (e.g. mouse.x, foo.a	
  +	
  bar.b, etc.), or a spe-
cial value, described next. After an event is activated, every 
property gets its value from that events’s column until an-
other event is activated. Euclase highlights the column from 
which the current values are being used, as shown in Figure 
1. Euclase’s “reset” button allows users to return to the de-
fault state (as specified by objects’ INIT events) and undo 



any changes due to activated events. 
 
As an example, to make an object follow the mouse after 
the mouse is pressed on the object, a column would have 
the trigger mouse.down(this), a guard of true (the de-
fault), and constraints in the left and top properties that 
use the value mouse.x and mouse.y. In Figure 1, the circle 
will be dragged from its center, and will get dimmer while 
being dragged (because the color property is set to a dark 
red). 

Special Values 
As mentioned before, cells may have special values: 
 
KEEP is the default value for empty cells outside of the INIT 
event (for which the default is NULL). When KEEP is as-
signed to a property in a column, that property keeps the 
value or constraint that it currently has. In Figure 1, none of 
the events change the initial value of the radius property. 

KEEPVALUE is similar to KEEP but the property keeps only its 
current value and removes the constraint. For example, in 
Figure 1, the circle should stay at its last position when the 
mouse button is released, so the mouse.up() column uses 
KEEPVALUE in the left and top slots, so when this event 
happens, these properties will keep the current value, but 
discard the constraint. 

ONCE() converts an expression from a constraint into a val-
ue by evaluating the constraint only once each time the 
event is activated. For instance, a cell with the expression 
ONCE(mouse.x	
  +	
  this.foo) in the value column for some 
event E takes the values of mouse.x and this.foo immedi-
ately when E is activated and creates a static value from 
their sum. ONCE is useful when a property’s value needs to 
be calculated and stored before other constraints use it. For 
example, if we want event E to constrain an object’s left 
property to be mouse.x	
  –	
  draggingX and draggingX to be 
this.left	
  –	
  mouse.x at the time of event E (so the object 
will be dragged from the place that it is clicked with the 
mouse), we could set draggingX within a ONCE statement: 
ONCE(this.left	
  –	
  mouse.x). These values, which would 
form a cycle without the ONCE operator, instead constrain 
the horizontal position of the object to where it was relative 
to the mouse when E was activated.	
  

Design Rationale 
Our language and environment design combines features 
from property sheets, state transition diagrams, event lan-
guages, and spreadsheets, which have each proven success-
ful as mechanisms for expressing certain kinds of computa-
tions, but none of which are adequate alone. Property 
sheets, which normally list object properties and their val-
ues, allow the developer to see what properties an object 
has and their current value. Euclase’s guards and events 
allow state transition diagrams to be easily translated into 
working code without having to specify behavior in every 
state or state combination, avoiding the state explosion 
problem. 

Euclase also derives several features from spreadsheets, 
including the way users enter in constraints – by writing 
formulas among cells in a table rather than in the context of 
imperative code. Another trait Euclase shares with spread-
sheets is that Euclase is a “live” system in that the designer 
can edit properties even while the system is running. This 
fosters exploration and the incremental building up of the 
desired program and enables more reflection-in-action than 
languages that require the edit-compile-run loop or even the 
edit-run loop of interpreted languages like Javascript. 
 
Euclase augments, as well as combining, some of the fea-
tures from these four paradigms. For example, constraints, 
which are always activated in spreadsheets, can easily be 
enabled or disabled in Euclase depending on different ap-
plication states. This replaces most places where previous 
systems have needed two-way constraints, while giving the 
designer more control. For example, the shoe-color selec-
tion widget shown in Figure 2 constrains the selected color 
to be the color of the selected shoe part or alternatively the 
color of the selected shoe part becomes the color that was 
last clicked, depending on whether a shoe part or color was 
clicked last. In other words, states control whether the value 
comes from or goes to the selected object. Another example 
where this would be useful is when an object should either 
grow or move based on where it is clicked; in which case 
different states would activate different constraints. 

PROTOTYPE AND USER STUDY 
We created a prototype of Euclase in client-side Javascript 
that runs entirely in Firefox or any modern Webkit-based 
browser. The code in each cell is parsed and interpreted in 
Javascript with the help of the JSCC parser generator1, so 
that the syntax may be changed in the future. 

                                                             
1 http://jscc.jmksf.com/ 

Figure 2 - Euclase can emulate two-way constraints by ena-
bling and disabling constraints conditionally. In this imple-
mentation of a shoe customization site, a constraint sets the 
selected color to that of the currently selected shoe part (out-
lined in orange) of the currently selected shoe part or the cur-
rently selected shoe part’s color to the last color picked, de-
pending on what was selected last. Constraints also maintain 
the distance between the color palettes so that if one grows, the 
others move automatically. This example requires 6 con-
straints (3 to constrain shoe part colors and 3 for color posi-
tioning) in 21 event columns (excluding INITs) across all 7 
graphical objects and one non-graphical object. This will be 
significantly reduced in the future when we add support for 
lists of objects all with the same behavior. 



 

Preliminary Usability Evaluation 
As an initial evaluation of our proposed paradigm for creat-
ing interactive behaviors, we recruited three interaction 
designers to write interactive behaviors using our system. 
Two of our participants had less than one year of program-
ming experience while the third had more than five years of 
programming experience. Participants were first shown an 
example of creating a draggable rectangle to guide them 
through the system. This took approximately 15 minutes for 
each participant. They were then asked to modify this ex-
ample by changing the color of the rectangle during hover, 
which they were all able to do without difficulty. 

Participants were then asked to implement a scrollbar 
trough and indicator where the user could drag the indicator 
within the trough. Participants were first asked to formulate 
their strategy for ensuring that the indicator remains in the 
range of the scroll bar. Two participants were able to im-
mediately formulate a strategy that would fit into our de-
scribed paradigm. The third participant needed help formu-
lating a strategy, but had no difficulty completing the task 
after being given a strategy. Upon knowing their strategy, 
participants were given a utility function range(val,	
  low,	
  
high) that returned max(low,	
   min(high,	
   val)). After 
being given a strategy, two participants were able to com-
plete the task with no problems, while the third participant 
had conceptual difficulties primarily due to confusion about 
coordinate spaces. All participants were able to complete 
the task within 20 minutes (from problem description to 
working implementation). 

Whereas the experienced programmer tended to write con-
straints for relative graphical object positioning, the novice 
programmers tended to hard-code numeric values for posi-
tioning, making many more incremental changes. Because 
participants worked in smaller increments, they tended to 
catch errors immediately – not only syntax errors that 
would be caught by static analysis, but also conceptual er-
rors - programs that would run, but not have the desired 
behavior. Participants expressed that not only did they find 
the ability to iterate quickly very useful, two participants 
expressed that they wanted even more immediate feedback, 
in the form of the design view showing the effect of a par-
ticular change as the user is still typing in a cell, even 
though its event had not yet been activated. 

RELATED WORK 
Other researchers have investigated some of the factors of 
programming interactive systems from a psychological per-
spective [2]. We believe our design alleviates many of the 
issues presented by these researchers. There has also been 
research on how to enable spreadsheet-like programming of 
applications, including the Forms/3 [1] system, which 
proved that procedural & data abstractions and graphical 
output were viable in the spreadsheet paradigm. However, 
most of this research has been focused on general func-
tional programming and does not take into account the par-
ticular challenges of programming interactive behaviors. 
There has also been a number of constraint programming 

systems, including Kaleidoscope [3], which enables con-
straints to be turned on and off. In addition, easy-to-use 
programming languages and environments, many of which 
make use of non-textual elements, such as Scratch [7], have 
long been a subject of research. However none of these 
languages have been designed to deal with the particular 
complexities of custom interactive behaviors. 

CONCLUSION & FUTURE WORK 
Our initial results from the usability evaluation shows 
promise for our paradigm and suggest many avenues for 
further development. The two participants with less pro-
gramming experience expressed interested in the addition 
of a direct-manipulation style tool that would allow them to 
lay objects out directly on-screen, as is possible in Flash 
Catalyst and the design view of Dreamweaver. We also 
hope to implement a form of programming-by-
demonstration where users can author interactive behaviors 
by demonstrating their desired behavior to the system. 

One participant with years of imperative programming ex-
perience expressed that they wanted to be able to set the 
properties of object B from object A’s object sheet (pushing 
values) rather than having to use constraints to pull values. 
We are currently investigating ways of allowing users to 
write more imperative style code like this without adversely 
affecting the visibility of current object sheet. 

We are also working on integrating animations into Euclase 
with the addition of a “timeline” cell view where users can 
specify animation paths, timing curves, and exceptional 
cases for when the animation is interrupted or cancelled 
while operating. 
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