

Figure 1 - A Euclase application with a single object, showing
design and code views. The event mouse.up() has just happened.

A Programming Paradigm for Creating Interactive Behaviors

ABSTRACT
Interactive behaviors (the parts of an application that re-
spond to user input) are difficult for designers to author.
Euclase provides a new programming paradigm that sup-
ports the features of interactive behaviors that make them
difficult to write in traditional programming languages. By
combining the more appropriate features of spreadsheets,
event-based programming, state diagrams, constraints, and
live prototyping, Euclase concisely expresses the kinds of
custom behaviors that designers want to create. A prelimi-
nary usability evaluation indicates that Euclase has promise.

Author Keywords
Interactivity programming, programming languages, pro-
gramming environments

ACM Classification Keywords
D.2.6. Programming Environments D.2.2. Design Tools and
Techniques

INTRODUCTION
Previous research has shown that while interaction design-
ers are able to program the look of their applications, they
have trouble programming the feel [4]. The feel of an appli-
cation is specified by its interactive behaviors, which we
define to be the changes of an application’s user interface in
response to user input. Whereas most tools for defining
interactive behaviors have focused on adding widgets on
top of existing languages, our goal is to improve the under-
lying programming paradigm, in order to allow designers to
author their own unique behaviors, and to be able to cus-
tomize the widgets in the library.

Design Process
In designing our paradigm, we first set out to find out what
are the issues when creating interactive behaviors [4],
which revealed that designers want to author custom behav-
iors, but are often stymied by existing tools, and the need to

transfer their ideas to developers. We then performed two
participatory design workshops with interaction designers
and programmers [5], using several examples of interactive
behaviors that are difficult to program in discovered that
designers use gestures, context, and analogies when trying
to express their designs to developers. Using these results,
we formulated a new programming paradigm to support the
kinds of behaviors that we observed designers needing. We
also created a prototype of a programming environment
using our paradigm to evaluate its feasibility and performed
a preliminary evaluation of its learnability. We call our
paradigm and environment Euclase, short for End User
Centered Language, APIs, System, and Environment (see
Figure 1).

INTERACTIVE BEHAVIORS
In designing Euclase, we identified four primary features of
interactive behaviors, the first three of which tend to make
them difficult to program in conventional languages:

1. Interactive behaviors are state dependent. A user action
in one state often has a different meaning than that same
user action in another state. Furthermore, there are often
many different states in a program, with different parts
of the program being in different states at the same time.
For example, a drawing editor might be in drawing-
rectangle mode, while the user is operating an independ-
ent button, which is in interim-selected state.

2. Interactive behaviors are also often constraint-heavy.
There are constraints between the view of an application
and its model, and constraints among graphical objects
that define the layout of the application. For example,
constraints might be used to ensure that the text of a but-
ton is centered or that two buttons are adjacent. Fur-
thermore, the appropriate constraints change based on
the current state. When the user is operating a color
widget, for example, the color of a selected object is set
to be the widget’s color, but when changing which ob-
jects are selected, then the color widget is set to be the
color of the newly selected object.

3. Animations, which are an excellent means of improving
user understanding of program behavior, are often inte-
grated with interactive behaviors. This can increase the
complexity of the interactive behavior, as animation du-
ration and interruption now has to be taken into account
when writing the code for the interactive behavior.

4. Finally, interactive behaviors are usually event driven.
This makes the event-action callback paradigm popular
among languages that are intended for writing interac-
tive applications, including Javascript and ActionScript.

A programming language made for interactive behaviors
must be able to support these features effectively. In addi-
tion, we found from our participatory design workshops [5]
that a tool to create interactive applications must also be
sufficiently flexible to support nuanced design require-
ments, since designers want to have fine-grain control over
many aspects of the timing, movement and behavior. De-
signers also need support for reflection-in-action, the ability
to test and evaluate what one is creating while in the proc-
ess of creating it.

LANGUAGE & ENVIRONMENT DESIGN
To support reflection-in-action, Euclase (shown in Figure 1)
has two views, like Dreamweaver and other HTML editors.
On the top is the “design” view, where users may see and
interact with their application. Below this is the “code”
view where users write their applications. In our prototype,
there is no explicit compilation step – the design view dy-
namically changes its appearance and behavior as Euclase
objects are created, deleted, and modified.

Objects
Euclase objects use a hierarchical prototype-instance
model. Object is the main object type, Graphical	
 Object
is a type that extends Object and also creates a graphical
object in the design view. Graphical	
 Object is extended
by Rectangle, Ellipse, Image, etc. Each of these objects
is represented in the code view as an “object sheet.” Every
object sheet shows the object’s type, optional name, proper-
ties, and events.

Properties
When an object is first created in Euclase, it looks like a
standard property sheet, which has a row for each property

and its current value. The default properties that are created
depend on the type of object. A standard object (type Ob-­‐
ject), for example, has no properties by default, whereas a
generic Graphical	
 Object by default has fields for hori-
zontal and vertical location (left and top respectively),
width, height, and a draw function whose default value
depends on the type of graphical object, but may be over-
ridden, if necessary, to create a custom graphical object.

Constraints
The value for a property can be a constant, like 50 for left,
or “red” for color. Alternatively, the value can be a con-
straint, which recalculates the value based on a formula that
uses the properties of this or other objects. The constraint
solver in Euclase is based on the Amulet solver [8], and
supports one-way constraints with indirection (the target
object can be itself be calculated by a constraint, as in
this.object-­‐at-­‐left.color).

Currently, we use a Javascript-like language for the syntax
of the constraints, to support full flexibility of expression.
In the future, we may explore a new syntax based on inves-
tigations of what designers find more natural, guided by
commonalities in how they describe program behavior [6].

Events
Whereas object properties are represented by rows in the
object sheet, events are represented as columns. The first
column, immediately to the right of the property names,
lists the current value for every property. Event columns are
to the right of the current value column.

Every event has three parts: an optional “guard”, a “trig-
ger,” and a column of property values. The trigger is the
event that occurs, such as a mouse up, a mouse down over a
particular object, etc. Triggers can also be Boolean expres-
sions like this.x	
 >	
 500, that fire any time the value of the
expression switches from false to true. A guard is a con-
ditional expression that enables or disables the event.
Guards are intended to allow the object to have different
responses in different application or object states. An event
is “activated” when the guard evaluates to true and the
trigger is fired.

To begin, there is a special event called “INIT,” short for
initialization. Every object has an INIT event. The cells in
its value column represent the default values for every
property in the object sheet (the values before any event is
activated). Once an event is activated, every property takes
on the values of the cells in the event’s value column. These
cells might have static values (e.g. 3, “blue”, 5+2, etc.),
constraints (e.g. mouse.x, foo.a	
 +	
 bar.b, etc.), or a spe-
cial value, described next. After an event is activated, every
property gets its value from that events’s column until an-
other event is activated. Euclase highlights the column from
which the current values are being used, as shown in Figure
1. Euclase’s “reset” button allows users to return to the de-
fault state (as specified by objects’ INIT events) and undo

any changes due to activated events.

As an example, to make an object follow the mouse after
the mouse is pressed on the object, a column would have
the trigger mouse.down(this), a guard of true (the de-
fault), and constraints in the left and top properties that
use the value mouse.x and mouse.y. In Figure 1, the circle
will be dragged from its center, and will get dimmer while
being dragged (because the color property is set to a dark
red).

Special Values
As mentioned before, cells may have special values:

KEEP is the default value for empty cells outside of the INIT
event (for which the default is NULL). When KEEP is as-
signed to a property in a column, that property keeps the
value or constraint that it currently has. In Figure 1, none of
the events change the initial value of the radius property.

KEEPVALUE is similar to KEEP but the property keeps only its
current value and removes the constraint. For example, in
Figure 1, the circle should stay at its last position when the
mouse button is released, so the mouse.up() column uses
KEEPVALUE in the left and top slots, so when this event
happens, these properties will keep the current value, but
discard the constraint.

ONCE() converts an expression from a constraint into a val-
ue by evaluating the constraint only once each time the
event is activated. For instance, a cell with the expression
ONCE(mouse.x	
 +	
 this.foo) in the value column for some
event E takes the values of mouse.x and this.foo immedi-
ately when E is activated and creates a static value from
their sum. ONCE is useful when a property’s value needs to
be calculated and stored before other constraints use it. For
example, if we want event E to constrain an object’s left
property to be mouse.x	
 –	
 draggingX and draggingX to be
this.left	
 –	
 mouse.x at the time of event E (so the object
will be dragged from the place that it is clicked with the
mouse), we could set draggingX within a ONCE statement:
ONCE(this.left	
 –	
 mouse.x). These values, which would
form a cycle without the ONCE operator, instead constrain
the horizontal position of the object to where it was relative
to the mouse when E was activated.	

Design Rationale
Our language and environment design combines features
from property sheets, state transition diagrams, event lan-
guages, and spreadsheets, which have each proven success-
ful as mechanisms for expressing certain kinds of computa-
tions, but none of which are adequate alone. Property
sheets, which normally list object properties and their val-
ues, allow the developer to see what properties an object
has and their current value. Euclase’s guards and events
allow state transition diagrams to be easily translated into
working code without having to specify behavior in every
state or state combination, avoiding the state explosion
problem.

Euclase also derives several features from spreadsheets,
including the way users enter in constraints – by writing
formulas among cells in a table rather than in the context of
imperative code. Another trait Euclase shares with spread-
sheets is that Euclase is a “live” system in that the designer
can edit properties even while the system is running. This
fosters exploration and the incremental building up of the
desired program and enables more reflection-in-action than
languages that require the edit-compile-run loop or even the
edit-run loop of interpreted languages like Javascript.

Euclase augments, as well as combining, some of the fea-
tures from these four paradigms. For example, constraints,
which are always activated in spreadsheets, can easily be
enabled or disabled in Euclase depending on different ap-
plication states. This replaces most places where previous
systems have needed two-way constraints, while giving the
designer more control. For example, the shoe-color selec-
tion widget shown in Figure 2 constrains the selected color
to be the color of the selected shoe part or alternatively the
color of the selected shoe part becomes the color that was
last clicked, depending on whether a shoe part or color was
clicked last. In other words, states control whether the value
comes from or goes to the selected object. Another example
where this would be useful is when an object should either
grow or move based on where it is clicked; in which case
different states would activate different constraints.

PROTOTYPE AND USER STUDY
We created a prototype of Euclase in client-side Javascript
that runs entirely in Firefox or any modern Webkit-based
browser. The code in each cell is parsed and interpreted in
Javascript with the help of the JSCC parser generator1, so
that the syntax may be changed in the future.

1 http://jscc.jmksf.com/

Figure 2 - Euclase can emulate two-way constraints by ena-
bling and disabling constraints conditionally. In this imple-
mentation of a shoe customization site, a constraint sets the
selected color to that of the currently selected shoe part (out-
lined in orange) of the currently selected shoe part or the cur-
rently selected shoe part’s color to the last color picked, de-
pending on what was selected last. Constraints also maintain
the distance between the color palettes so that if one grows, the
others move automatically. This example requires 6 con-
straints (3 to constrain shoe part colors and 3 for color posi-
tioning) in 21 event columns (excluding INITs) across all 7
graphical objects and one non-graphical object. This will be
significantly reduced in the future when we add support for
lists of objects all with the same behavior.

Preliminary Usability Evaluation
As an initial evaluation of our proposed paradigm for creat-
ing interactive behaviors, we recruited three interaction
designers to write interactive behaviors using our system.
Two of our participants had less than one year of program-
ming experience while the third had more than five years of
programming experience. Participants were first shown an
example of creating a draggable rectangle to guide them
through the system. This took approximately 15 minutes for
each participant. They were then asked to modify this ex-
ample by changing the color of the rectangle during hover,
which they were all able to do without difficulty.

Participants were then asked to implement a scrollbar
trough and indicator where the user could drag the indicator
within the trough. Participants were first asked to formulate
their strategy for ensuring that the indicator remains in the
range of the scroll bar. Two participants were able to im-
mediately formulate a strategy that would fit into our de-
scribed paradigm. The third participant needed help formu-
lating a strategy, but had no difficulty completing the task
after being given a strategy. Upon knowing their strategy,
participants were given a utility function range(val,	
 low,	

high) that returned max(low,	
 min(high,	
 val)). After
being given a strategy, two participants were able to com-
plete the task with no problems, while the third participant
had conceptual difficulties primarily due to confusion about
coordinate spaces. All participants were able to complete
the task within 20 minutes (from problem description to
working implementation).

Whereas the experienced programmer tended to write con-
straints for relative graphical object positioning, the novice
programmers tended to hard-code numeric values for posi-
tioning, making many more incremental changes. Because
participants worked in smaller increments, they tended to
catch errors immediately – not only syntax errors that
would be caught by static analysis, but also conceptual er-
rors - programs that would run, but not have the desired
behavior. Participants expressed that not only did they find
the ability to iterate quickly very useful, two participants
expressed that they wanted even more immediate feedback,
in the form of the design view showing the effect of a par-
ticular change as the user is still typing in a cell, even
though its event had not yet been activated.

RELATED WORK
Other researchers have investigated some of the factors of
programming interactive systems from a psychological per-
spective [2]. We believe our design alleviates many of the
issues presented by these researchers. There has also been
research on how to enable spreadsheet-like programming of
applications, including the Forms/3 [1] system, which
proved that procedural & data abstractions and graphical
output were viable in the spreadsheet paradigm. However,
most of this research has been focused on general func-
tional programming and does not take into account the par-
ticular challenges of programming interactive behaviors.
There has also been a number of constraint programming

systems, including Kaleidoscope [3], which enables con-
straints to be turned on and off. In addition, easy-to-use
programming languages and environments, many of which
make use of non-textual elements, such as Scratch [7], have
long been a subject of research. However none of these
languages have been designed to deal with the particular
complexities of custom interactive behaviors.

CONCLUSION & FUTURE WORK
Our initial results from the usability evaluation shows
promise for our paradigm and suggest many avenues for
further development. The two participants with less pro-
gramming experience expressed interested in the addition
of a direct-manipulation style tool that would allow them to
lay objects out directly on-screen, as is possible in Flash
Catalyst and the design view of Dreamweaver. We also
hope to implement a form of programming-by-
demonstration where users can author interactive behaviors
by demonstrating their desired behavior to the system.

One participant with years of imperative programming ex-
perience expressed that they wanted to be able to set the
properties of object B from object A’s object sheet (pushing
values) rather than having to use constraints to pull values.
We are currently investigating ways of allowing users to
write more imperative style code like this without adversely
affecting the visibility of current object sheet.

We are also working on integrating animations into Euclase
with the addition of a “timeline” cell view where users can
specify animation paths, timing curves, and exceptional
cases for when the animation is interrupted or cancelled
while operating.

REFERENCES
1. Burnett, M. et al. Forms/3: A first-order visual language

to explore the boundaries of the spreadsheet paradigm. J.
Funct. Program., vol. 11, no. 2, (2001), 155-206.

2. Letondal, C., Chatty, S., Phillips, W. et al., "Usability
requirements for interaction-oriented development
tools," PPIG, 2010.

3. Lopez, G., "The design and implementation of
Kaleidoscope, a constraint imperative programming
language," University of Washington, Seattle, WA, 1997.

4. Myers, B. A. et al. How Designers Design and Program
Interactive Behaviors. IEEE VL/HCC'2008, 177-184.

5. Ozenc, F. et al., "How to Support Designers in Getting
Hold of the Immaterial Material of Software," 2010.

6. Park, S., Myers, B. & Ko, A. Designers' Natural
Descriptions of Interactive Behaviors. VL/HCC 2008
185-188.

7. Resnick, M., Maloney, J., et al., "Scratch: programming
for all," Communications of the ACM, 11, 2009, pp. 60-
67.

8. Vander Zanden, B. T. et al. Lessons learned about one-
way, dataflow constraints in the Garnet and Amulet
graphical toolkits. ACM Trans. Program. Lang. Syst.,
vol. 23, no. 6, (2001), 776-796.

