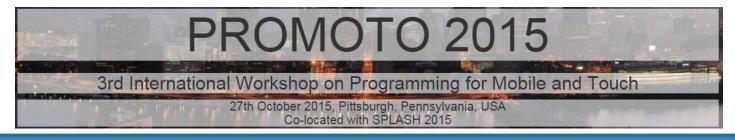
Towards More Natural Programming for Mobile and Touch

Brad A. Myers


Human-Computer Interaction Institute School of Computer Science Carnegie Mellon University

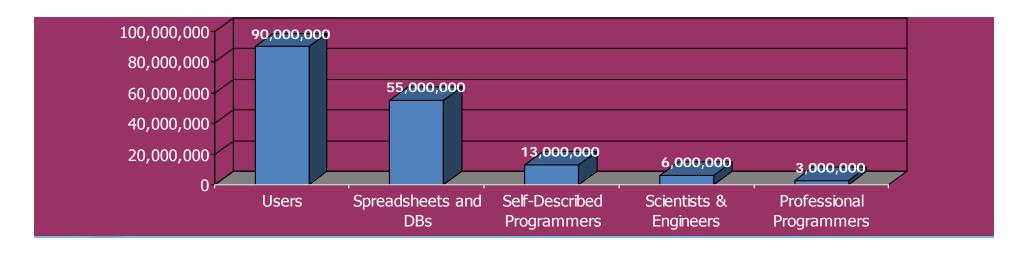
http://www.cs.cmu.edu/~bam

bam@cs.cmu.edu

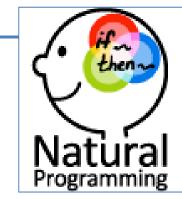
Former Project: Pebbles

- PDAs for Entry of Both Bytes and Locations from External Sources
- http://www.pebbles.hcii.cmu.edu/
- One of the first to investigate Personal Digital Assistants (PDAs), 1997-2002
 - Starting with original Palm Pilot,
 Windows CE 2.1
- Key research using PDAs with PCs
- Provided end-user programming

Pebbles


Natural Programming Project

- Natural Programming
- Researching better tools for programming since 1978
- Natural Programming project started in 1995
- Make programming easier and more correct by making it more natural
 - Closer to the way that people think about algorithms and solving their tasks
- Methodology human-centered approach
 - Perform studies to inform design
 - Provide new knowledge about what people do and think, & barriers
 - Guide the designs from the data
 - Design of programming languages and environments
 - Iteratively evaluate and improve the tools
 - Target novice, expert and end-user programmers


"End-User Programmers"

- Programming tools are not just used by highly-trained professional programmers
- End-User Programmers = People whose primary job is not programming
- In 2012 in USA at work: [Scaffidi, Shaw and Myers 2005]
 - 3 million professional programmers
 - 6 million scientists & engineers
 - 13 million will describe themselves as programmers
 - 55 million will use spreadsheets or databases at work
 - 90 million computer users at work in US

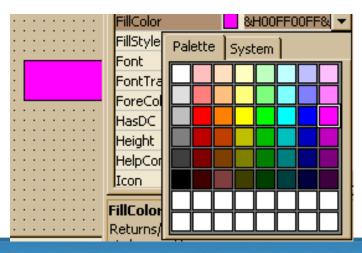
Why Would Being Natural be Good?

- Programmers are People Too
 - Take the human into account
- Language should be close to user's plan

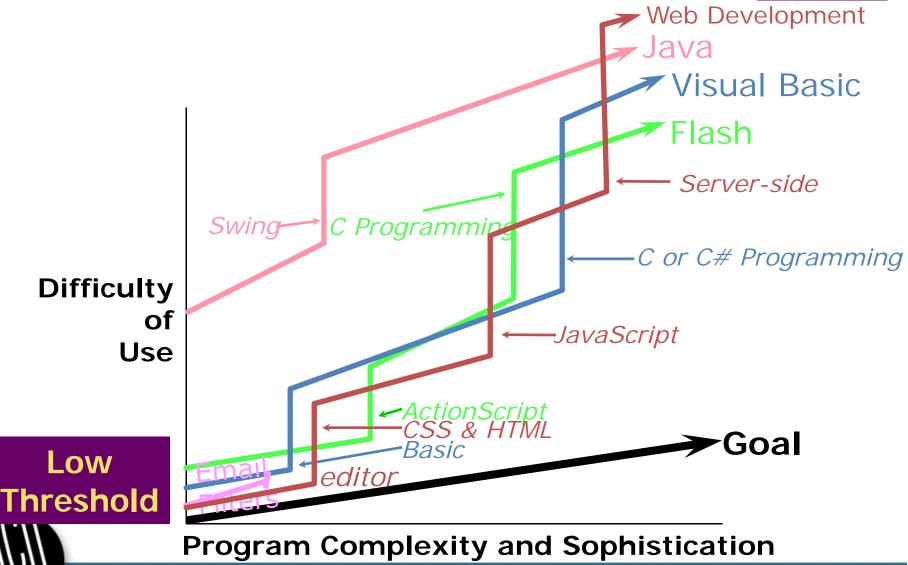
- "Programming is the process of transforming a mental plan into one that is compatible with the computer."
 — Jean-Michel Hoc
- Closeness of mapping
 - "The closer the programming world is to the problem world, the easier the problem-solving ought to be.... Conventional textual languages are a long way from that goal." Green and Petre

Not so Natural!

```
class HelloWorldApp {
    public static void main(String[] args) {
        System.out.println("Hello World!");
    }
}
```


- 3 kinds of parentheses and 9 special words!
- Compared to click and type: "Hello World!"

Let Shape1.FillColor


= &H00FF00FF&

Goal: Gentle Slope Systems

UX Techniques to Improve Programming

Exploratory Studies Contextual Inquiries Field Studies Surveys Logs & error reports

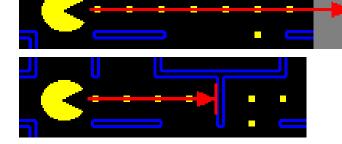
Corpus data mining

Develop

Envision

Evaluative Studies

- **Usability Evaluation**
- Formal Lab studies
- Expert analyses
 - **Heuristic Evaluation**
 - Cognitive Walkthroughs
 - **Cognitive Dimensions**


Design Practices

Lab Studies

- "Natural programming" elicitation
- Graphic & **Interaction Design**
- Paper Prototyping

First Natural Programming Studies

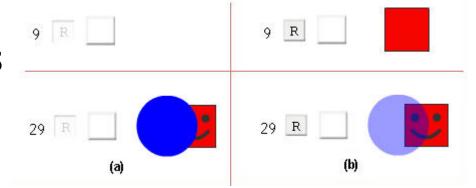
- John Pane, PhD 2002
- Studies:
 - How people naturally express programming concepts and algorithms
 - 1) Nine scenes from PacMan
 - 2) Transforming and calculating data in a spreadsheet

- Specific issue of language design
 - 3) Selecting specific objects from a group ("and", "or", "not")

Lots of interesting results

Examples of Results

- Rule-based style "If PacMan loses all his lives, its game over."
- "And", "Or", "Not" don't match computer interpretation
 - ... left-handed and right-handed people
 - ... (not an apple) or pear
- Operations suggest data as lists, not arrays
 - People don't make space before inserting
- Objects normally moving "If PacMan hits a wall, he stops."
 - so objects remember their own state


Interactive Behaviors

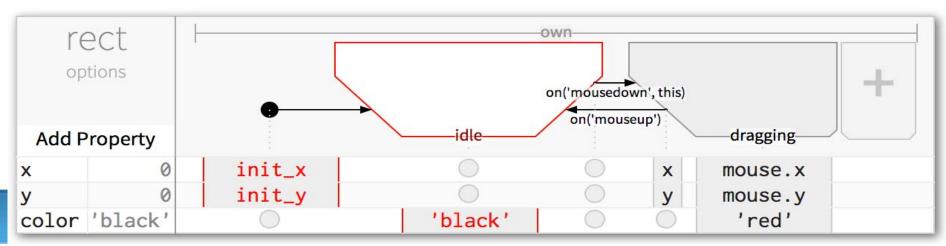
• (VL/HCC'08)

Studied natural expression for interactive behaviors

& animations

 Before and after pictures of primitives of interactive behaviors

- More use of constraints
- Consistent wording -- "appears", "fades out"

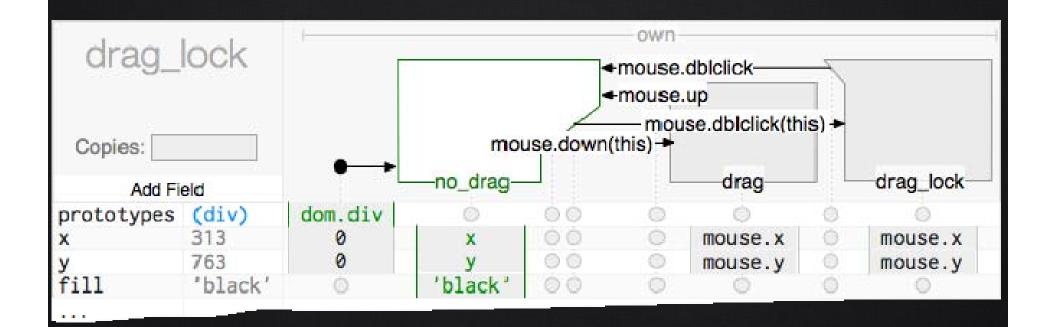


InterState

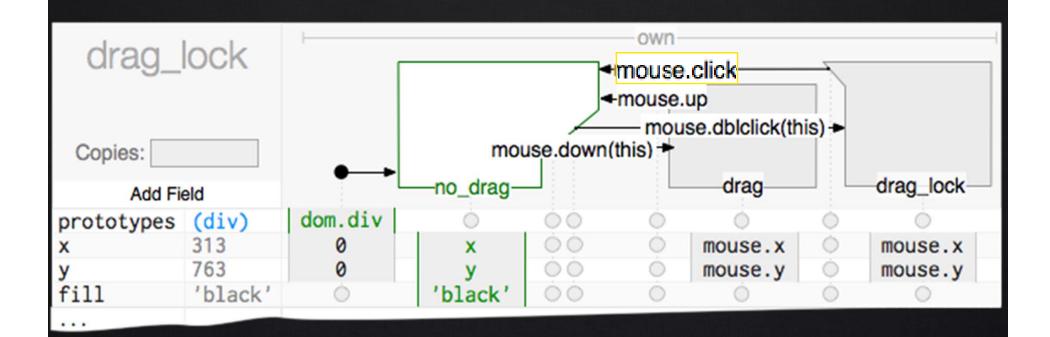
- PhD work of Stephen Oney (PhD 2015)
 - Now faculty at Univ. Michigan
 - http://interstate.from.so/
- Visual Programming Language for expressing behaviors
- Aimed at Interaction Designers (EUPs) who have some experience with programming
- Spreadsheet-like tables for object properties with constraints
- Columns are state machines to control when applied
- Many innovations in language, inheritance model, etc.

(UIST'14) <u>Video (3:36)</u>

Equivalent drag-lock JavaScript code


```
var isDragLocked = false,
  mm_listener = function(mm_event) {
    draggable.attr({ x: mm ev.x, y: mm ev.y });
  mu_listener = function(mu_event) {
    removeEventListener("mousemove", mm listener);
    removeEventListener("mouseup", mu listener);
                                                          Control
                                                          flow on
draggable.mousedown(function(md_ev) {
  draggable.attr({ x: md_ev.x, y: md_ev.y });
                                                     double-click
  addEventListener("mousemove", mm_listener);
  addEventListener("mouseup", mu_listener);
}).dblclick(function(md_event) {
  if(isDragLocked) {
    removeEventListener("mousemove", mm listener);
  } else {
    addEventListener ("mousemove", mm listener);
  isDragLocked = !isDragLocked;
});
```

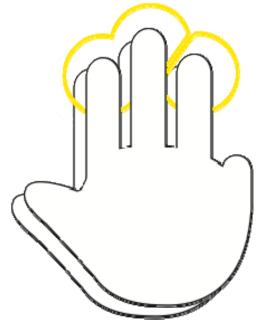
Equivalent drag-lock JavaScript code


```
var isDragLocked = false,
  mm_listener = function(mm_event) {
    draggable.attr({ x: mm ev.x, y: mm ev.y });
  mu_listener = function(mu_event) {
    removeEventListener("mousemove", mm listener);
    removeEventListener("mouseup", mu_listener);
draggable.mousedown(function(md_ev) {
  draggable.attr({ x: md_ev.x, y: md_ev.y });
  addEventListener("mousemove", mm_listener);
  addEventListener("mouseup", mu_listener);
}).dblclick(function(md_event) {
  if(isDragLocked) {
    removeEventListener("mousemove", mm listener);
  } else {
    addEventListener ("mousemove", mm listener);
  isDragLocked = !isDragLocked;
});
```

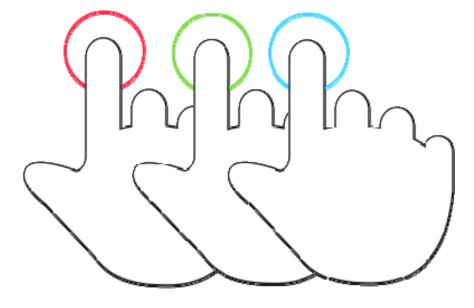
Control flow when click again

Most of the InterState code

Changes required for single-click to exit


Changes required for single-click to exit

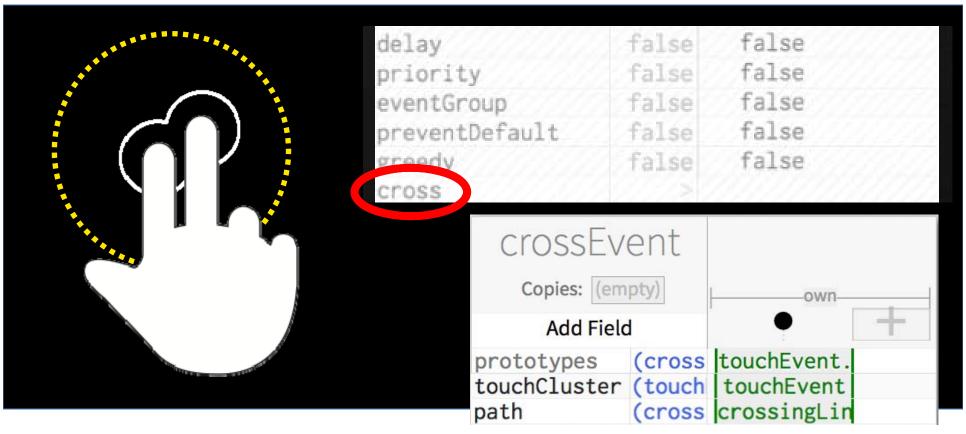
```
var isDragLocked = false,
  mm listener = function(mm ev) {
    draggable.attr({ x: mm_ev.x, y: mm_ev.y });
  mu listener = function(mu_event){
    if(!isDragLocked) {
       removeEventListener("mousemove", mm listener);
       removeEventListener("mouseup", mu listener);
draggable.mousedown(function(md ev) {
  draggable.attr({ x: md_ev.x, y: md_ev.y });
  if(!isDragLocked) {
    addEventListener("mousemove", mm_listener);
    addEventListener("mouseup", mu_listener);
}).dblclick(function(md_event){
  if(!isDragLocked) {
   removeEventListener("mousemove", mm_listener);
  l else (
            addEventListener("mousemove", mm listener);
    isDragLocked = !isDragLocked;
}).click(function(c_event) {
  if(isDragLocked){
    removeEventListener("mousemove", mm listener);
    isDragLocked = !isDragLocked;
```


InterState: touch clusters

- Newest work better ways to describe touch events and resulting behaviors
- Developers specify number of fingers, where pressed, etc.
- Outputs: location, scale, rotation
- Resolving conflicts:
 - optional delay & priority for events
 - touch clusters can determine whether other clusters can use same touches

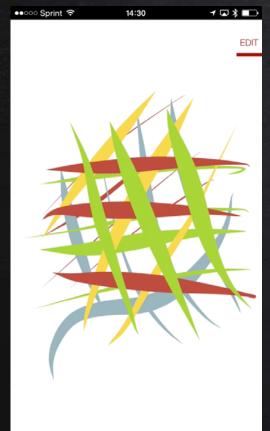
Disambiguation

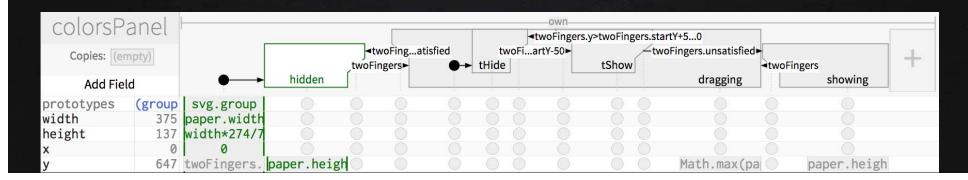
three-finger cluster fires



three single-touch clusters fire

delay	false	false	
priority	false	false	
eventGroup	false	false	
preventDefault	false	false	
greedy	false	false	
CEACC			


Crossing events


- Lines, circles, rects
- Can be calculated with formulas

Putting these together

- One-finger swipe up for tools
- Two-finger swipe up for colors
- Crossing invisible rectangle at the bottom

Gneiss: Extending Spreadsheet Programming

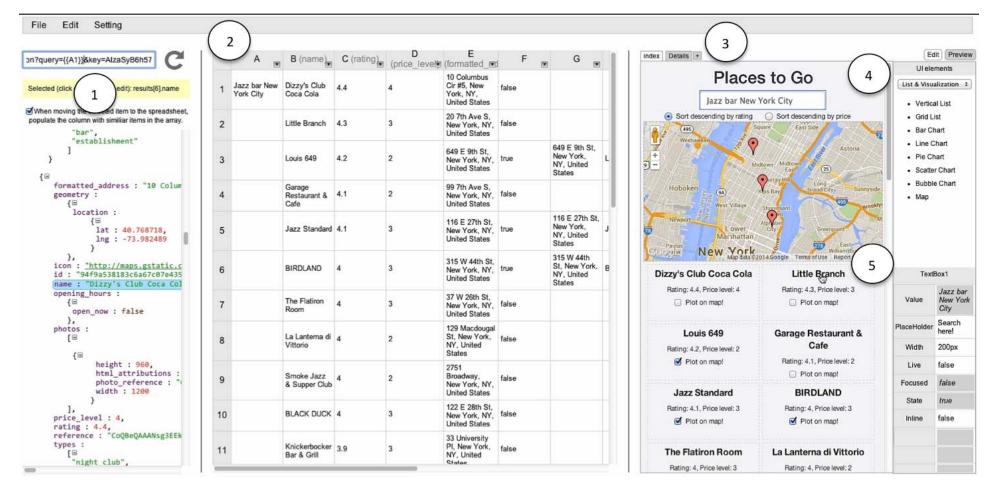
PhD work of HCII student Kerry Chang (in progress)

- Gneiss: Gathering Novel End-user Internet Services using Spreadsheets
- Extend spreadsheet model so spreadsheet can calculate using web service data, streaming data, and web user interfaces
 - Lists of restaurants, movies, cars, stock prices, RSS feeds, Twitter feeds, ... (almost anything!)
- Can also create user interfaces that use and control the values

(VL/HCC'14, UIST'14, CHI'15)

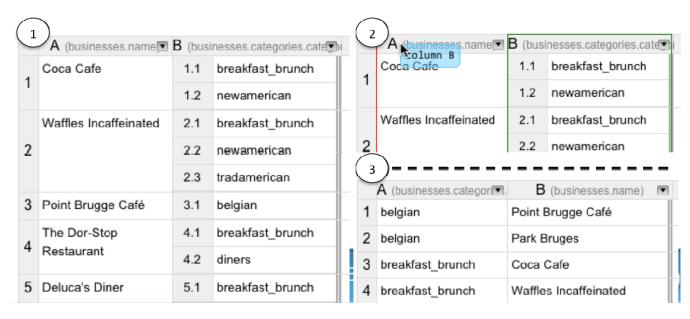
Gneiss Language

- Code using familiar spreadsheet language
 - Innovation: pull (formula) semantics even for user interface elements (instead of events)
- Interface builder to drag in UI elements
 - Connect to spreadsheet cells using formulas
 - Including lists Autofill-down to populate
- Multiple pages transitions based on input events and formulas



Gneiss Video

Right pane could be on mobile device



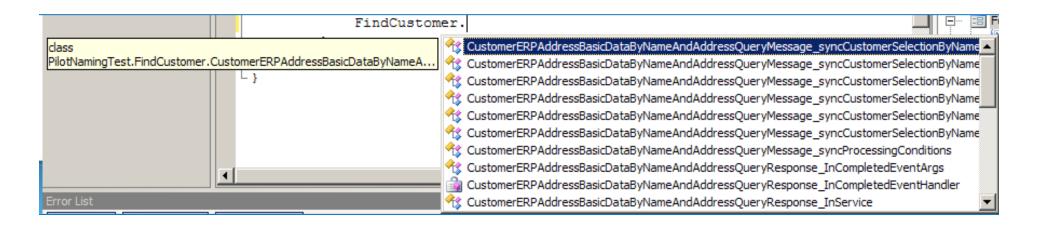
Gneiss New Features

- Newest work handle hierarchical data using spreadsheet UIs – e.g., JSON data
- Submitted for publication
- Drag columns to restructure
- Spreadsheet language can refer to cells at multiple levels

(1) a screenshot of our tool showing a list of restaurants and their categories retrieved from Yelp's JSON web service. Nested tables are used to represent the hierarchical structure. By dragging column B to the front (2), the user reshapes the data and views the restaurants by categories (3).

Study of APIs

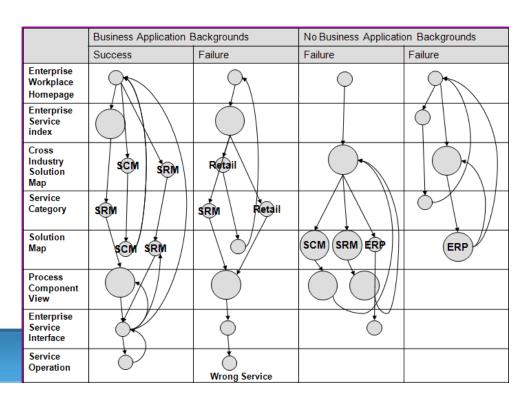
Started as PhD work of Jeff Stylos, PhD, 2009


- Inspired by Steven Clarke, Microsoft Visual Studio group
- Application Programming Interface
 - Libraries, frameworks, SDKs, ...
- Which programming patterns are most usable?
- Barriers to use of APIs
- Measures: learnability, errors, preferences
- Expert and novice programmers
- Studied:
 - Default parameters in constructors
 - Factory pattern
 - Object design
 - SAP's Web Services APIs
- See www.apiusability.org

Study of APIs for SAP

- Study APIs for Enterprise
 Service-Oriented Architectures ("Web Services")
- Naming problems:
 - Too long material Simple By TD And Description Query Moscocke_symptotic leads to any TD And Description Description
 - Not understandable
 - Differences in *middle* are frequently missed

CustomerAddressBasicDataByNameAndAddressRequestMessageCustomerSelectionCommonName CustomerAddressBasicDataByNameAndAddressResponseMessageCustomerSelectionCommonName


eSOA Documentation Results

- Multiple paths: unclear which one to use
- Some paths were dead ends
- Inconsistent look and feel caused immediate abandonment of paths

 Hard to find required information

 Business background helped

(IS-EUD'2009)

Required Constructors

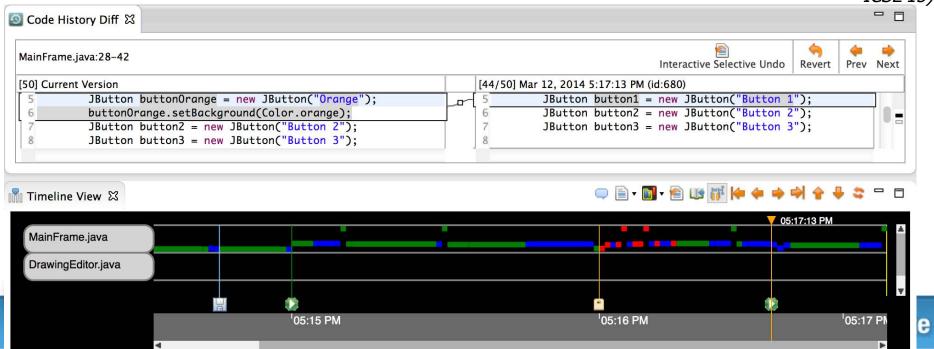
Compared create-set-call (default constructor)

```
var foo = new FooClass();
foo.Bar = barValue;
foo.Use();
```

- vs. required constructors (immutable classes):
 var foo = new FooClass(barValue);
 foo.Use();
- All participants assumed there would be a default constructor
- Required constructors interfered with learning
 - Users wanted to experiment with what kind of object to use first
- Preferred to not use temporary variables

New Project: API Usability & Security

- Collaboration with CMU's Software Engineering Institute (SEI)
- New NSF grant & SEI grant
- Sometimes usability ≅ security
 - More usable → fewer mistakes
 - E.g., Android and iOS apps misused Secure Sockets Layer (SSL) or Transport Layer Security (TLS) due to difficulties with using the APIs and had vulnerabilities [Fahl, CCS 2013]
- But sometimes usability ≠ security
 - Mutability better for usability, worse for security
- How can usability research inform API design for security?
 - Current study: Immutability in APIs (PhD student Michael Coblenz)
 - Interviews showed const, final, readonly, etc. are inadequate


Future study: Error and exception handling

Azurite: Exploring Selective Undo

- PhD work of ISR student YoungSeok Yoon (May'2015)
- Azurite: Adding Zest to Undoing and Restoring Improves Textual Exploration http://www.cs.cmu.edu/~azurite
- Work out meaning of selective undo for code
 - Conflicting edits of same region of code
- Time-line visualization of all past operations
- Search through history (time) to find appropriate points (VL/HCC'13 & '15, ICSE'15)

Summary of Insights

- Field and lab studies can reveal the real issues
 - Addressing these issues creates tools that are actually useful
- Researcher's intuitions about what might be useful are often wrong
- Our experience highlights:
 - Understanding the barriers can lead to more effective tools
 - Many user-centered methods can be successfully applied to help understand developers and create better tools.
 - Completely different ways to program mobile applications are possible

There are lots of Gemstones!

And acronyms are fun!

Fluorite: Full of Low-level User

The **E**ditor

Azurite: Adding Zest to **U**ndoing and Restoring **I**mproves **T**extual **E**xploration

Apatite: **A**ssociative Perusing of **A**PIs That **I**dentifies **Targets E**asily

Euclase:

Crystal: **C**larifications Regarding Your **S**oftware using a Toolkit, Architecture and Language

Tacked-on for

Emphasis

Jadeite:

Java

Extra

APT

Documentation with Information

Jasper: Java Aid with Sets of

Pertinent **Elements** for Recall

GARNET Generating an Amalgam of Real-time, Novel **E**ditors and **T**oolkits

Aquamarine:

Allowing

Can Create Complex, Correct Constraints that are Constructed Clearly and Concretely, and Communicated using Columns of Cells, that are **C**onstantly

Calculated so they

Continuously, and

Change

Cancel

Confusion

C32 CMU's Clever and

Compelling

Complete

Code and

Contains a

Creative

Cornucopia of

Constructs, because it

Coverage of

Contribution to

Computer Science in CommonLisp which is

Customizable and

Characterized by a

Euklas: Eclipse Users' **K**evstrokes Lessened by Attaching from Samples

Graphite: GRAphical **Palettes** Instantiate Types in the Calcite: Construction And

Language Completion Integrated **T**hroughout **GNEISS: G**athering Novel **E**nd-user Internet Services using **S**preadsheets

PEBBLES PDAs for Entry of **B**oth Bytes and Locations from **E**xternal

Sources

For more, see: www.cs.cmu.edu/~bam/acronyms.html

Thanks to:

NSF

Funding:

- NSF under CNS-1423054, HCC-1314356, IIS-1116724, IIS-0329090, CCF-0811610, IIS-0757511 (Creative-IT), and NSF ITR CCR-0324770 as part of the EUSES Consortium
- SAP
- Adobe
- TBM
- Microsoft Research RISE

Research

>32 students:

- Htet Htet Aung
- Jack Beaton
- Ruben Carbonell
- John R. Chang
- Kerry S. Chang
- Polo Chau
- Luis J. Cota
- Michael Coblenz
- Dan Eisenberg
- Brian Ellis
- Andrew Faulring
- Aristiwidya B. (Ika) Hardjanto

- Erik Harpstead
- Sae Young (Sophie) Jeong
- Andy Ko
- Sebon Koo
- Ashley Lai
- Thomas LaToza
- Tam Minh Le
- Joonhwan Lee
- Leah Miller
- Mathew Mooty
- Gregory Mueller

- Yoko Nakano
- Stephen Oney
- John Pane
- Sunyoung Park
- Chotirat (Ann) Ratanamahatana
- Christopher Scaffidi
- Jeff Stylos
- David A. Weitzman
- Yingyu (Clare) Xie
- Zizhuang (Zizzy) Yang
- YoungSeok Yoon

Human-Computer Interaction Institute School of Computer Science Carnegie Mellon University

http://www.cs.cmu.edu/~bam bam@cs.cmu.edu

PROMOTO 2015

3rd International Workshop on Programming for Mobile and Touch

27th October 2015, Pittsburgh, Pennsylvania, USA Co-located with SPLASH 2015