
Towards More Natural
Programming for Mobile

and Touch
Brad A. Myers

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

© 2015 – Brad A. Myers1

Former Project: Pebbles
• PDAs for Entry of Both Bytes

and Locations from External Sources
• http://www.pebbles.hcii.cmu.edu/
• One of the first to investigate Personal

Digital Assistants (PDAs), 1997-2002
– Starting with original Palm Pilot,

Windows CE 2.1
• Key research – using PDAs with PCs
• Provided end-user programming

of panels

2 © 2015 – Brad A. Myers

Natural Programming Project
• Researching better tools for programming

since 1978
• Natural Programming project started in 1995
• Make programming easier and more correct by making it

more natural
– Closer to the way that people think about algorithms and

solving their tasks
• Methodology – human-centered approach

– Perform studies to inform design
• Provide new knowledge about what people do and think, & barriers

– Guide the designs from the data
• Design of programming languages and environments

– Iteratively evaluate and improve the tools
• Target novice, expert and end-user programmers

© 2015 – Brad A. Myers3

“End-User Programmers”
• Programming tools are not just used by highly-trained

professional programmers
• End-User Programmers = People whose primary job is not programming
• In 2012 in USA at work: — [Scaffidi, Shaw and Myers 2005]

– 3 million professional programmers
– 6 million scientists & engineers
– 13 million will describe themselves as programmers
– 55 million will use spreadsheets or databases at work
– 90 million computer users at work in US

© 2015 – Brad A. Myers4

90,000,000

55,000,000

13,000,000
6,000,000 3,000,000

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

Users Spreadsheets and
DBs

Self-Described
Programmers

Scientists &
Engineers

Professional
Programmers

Why Would Being Natural be Good?

• Programmers are People Too
– Take the human into account

• Language should be close to user’s plan
– “Programming is the process of transforming a mental

plan into one that is compatible with the computer.”
— Jean-Michel Hoc

• Closeness of mapping
– “The closer the programming world is to the problem

world, the easier the problem-solving ought to be.…
Conventional textual languages are a long way from
that goal.” — Green and Petre

© 2015 – Brad A. Myers5

class HelloWorldApp {
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

Not so Natural!

• 3 kinds of parentheses and 9 special words!
• Compared to click and type: “Hello World!”

Let Shape1.FillColor
= &H00FF00FF&

6 © 2015 – Brad A. Myers

Program Complexity and Sophistication

Goal: Gentle Slope Systems

Difficulty
of

Use

Goal

Flash

ActionScript

C Programming

Visual Basic

Basic

C or C# Programming
Swing

Java

Low
Threshold

High
Ceiling

Web Development

CSS & HTML

JavaScript

editor

Server-side

© 2015 – Brad A. Myers7

UX Techniques to Improve Programming
Exploratory Studies

 Contextual Inquiries
 Surveys
 Lab Studies
 Corpus data mining

Evaluative Studies
 Usability Evaluation
 Formal Lab studies
 Expert analyses

 Heuristic Evaluation
 Cognitive Walkthroughs
 Cognitive Dimensions

Design Practices
 “Natural

programming”
elicitation

 Graphic &
Interaction Design

 Paper Prototyping

Field Studies
 Logs & error reports

© 2015 – Brad A. Myers8

First Natural Programming Studies

• John Pane, PhD 2002
• Studies:

– How people naturally express programming
concepts and algorithms

• 1) Nine scenes from PacMan
• 2) Transforming and calculating

data in a spreadsheet

– Specific issue of language design
• 3) Selecting specific objects from a group (“and”,

“or”, “not”)

– Lots of interesting results
© 2015 – Brad A. Myers9

Examples of Results
• Rule-based style

“If PacMan loses all his lives, its game over.”
• “And”, “Or”, “Not” don’t match computer

interpretation
– … left-handed and right-handed people
– … not an apple or pear

• Operations suggest data as lists, not arrays
– People don’t make space before inserting

• Objects normally moving
“If PacMan hits a wall, he stops.”
– so objects remember their own state

()

© 2015 – Brad A. Myers10

Interactive Behaviors

• (VL/HCC'08)

• Studied natural expression for interactive behaviors
& animations

• Before and after pictures
of primitives of
interactive behaviors

• More use of constraints
• Consistent wording -- “appears”, “fades out”

© 2015 – Brad A. Myers11

InterState
• PhD work of Stephen Oney (PhD 2015)

– Now faculty at Univ. Michigan
– http://interstate.from.so/

• Visual Programming Language for expressing behaviors
• Aimed at Interaction Designers (EUPs) who have some

experience with programming
• Spreadsheet-like tables for object properties with constraints
• Columns are state machines to control when applied
• Many innovations in language,

inheritance model, etc. (UIST'14)
Video (3:36)

© 2015 – Brad A. Myers12

var isDragLocked = false,
mm_listener = function(mm_event) {

draggable.attr({ x: mm_ev.x, y: mm_ev.y });
},
mu_listener = function(mu_event) {

removeEventListener("mousemove", mm_listener);
removeEventListener("mouseup", mu_listener);

};

draggable.mousedown(function(md_ev) {
draggable.attr({ x: md_ev.x, y: md_ev.y });
addEventListener("mousemove", mm_listener);
addEventListener("mouseup", mu_listener);

}).dblclick(function(md_event) {
if(isDragLocked) {

removeEventListener("mousemove", mm_listener);
} else {

addEventListener ("mousemove", mm_listener);
}
isDragLocked = !isDragLocked;

});

Equivalent drag-lock JavaScript code

Control
flow on

double-click

13

var isDragLocked = false,
mm_listener = function(mm_event) {

draggable.attr({ x: mm_ev.x, y: mm_ev.y });
},
mu_listener = function(mu_event) {

removeEventListener("mousemove", mm_listener);
removeEventListener("mouseup", mu_listener);

};

draggable.mousedown(function(md_ev) {
draggable.attr({ x: md_ev.x, y: md_ev.y });
addEventListener("mousemove", mm_listener);
addEventListener("mouseup", mu_listener);

}).dblclick(function(md_event) {
if(isDragLocked) {

removeEventListener("mousemove", mm_listener);
} else {

addEventListener ("mousemove", mm_listener);
}
isDragLocked = !isDragLocked;

});

Equivalent drag-lock JavaScript code

Control
flow when
click again

14

Most of the InterState code

15

Changes required for single-click to exit

16

Changes required for single-click to exit

17

InterState: touch clusters

• Newest work – better ways to describe
touch events and resulting behaviors

• Developers specify number of fingers,
where pressed, etc.

• Outputs: location, scale, rotation
• Resolving conflicts:

– optional delay & priority for events
– touch clusters can determine whether other

clusters can use same touches
© 2015 – Brad A. Myers18

Disambiguation

three-finger
cluster fires

three single-touch
clusters fire

© 2015 – Brad A. Myers19

Crossing events

• Lines, circles, rects
• Can be calculated with formulas

© 2015 – Brad A. Myers20

Putting these together

- One-finger swipe up for tools

- Two-finger swipe up for colors

- Crossing invisible rectangle at
the bottom

21

Gneiss: Extending
Spreadsheet Programming

• PhD work of HCII student
Kerry Chang (in progress)

• Gneiss: Gathering Novel End-user Internet
Services using Spreadsheets

• Extend spreadsheet model so spreadsheet
can calculate using web service data,
streaming data, and web user interfaces
– Lists of restaurants, movies, cars, stock prices,

RSS feeds, Twitter feeds, … (almost anything!)
• Can also create user interfaces that use

and control the values
(VL/HCC’14, UIST'14,

CHI’15)

© 2015 – Brad A. Myers22

Gneiss Language

• Code using familiar spreadsheet language
– Innovation: pull (formula) semantics even

for user interface elements (instead of events)

• Interface builder to drag in UI elements
– Connect to spreadsheet cells using formulas
– Including lists – Autofill-down to populate

• Multiple pages – transitions based on input
events and formulas

© 2015 – Brad A. Myers23

Gneiss Video

• Right pane could be on mobile device Video
(5:00min)

© 2015 – Brad A. Myers24

Gneiss New Features

• Newest work – handle hierarchical data using
spreadsheet UIs – e.g., JSON data

• Submitted for publication
• Drag columns to restructure
• Spreadsheet language can refer to cells at

multiple levels

(1) a screenshot of our tool
showing a list of
restaurants and their
categories retrieved from
Yelp’s JSON web service.
Nested tables are used to
represent the hierarchical
structure. By dragging
column B to the front (2),
the user reshapes the data
and views the restaurants
by categories (3).

© 2015 – Brad A. Myers25

Study of APIs
• Started as PhD work of Jeff Stylos, PhD, 2009

– Inspired by Steven Clarke, Microsoft Visual Studio group
• Application Programming Interface

– Libraries, frameworks, SDKs, …
• Which programming patterns are most usable?
• Barriers to use of APIs
• Measures: learnability, errors, preferences
• Expert and novice programmers
• Studied:

– Default parameters in constructors
– Factory pattern
– Object design
– SAP’s Web Services APIs

• See www.apiusability.org

© 2015 – Brad A. Myers26

Study of APIs for SAP
• Study APIs for Enterprise

Service-Oriented Architectures (“Web Services”)
• Naming problems:

– Too long
– Not understandable
– Differences in middle are frequently missed

CustomerAddressBasicDataByNameAndAddressRequestMessageCustomerSelectionCommonName
CustomerAddressBasicDataByNameAndAddressResponseMessageCustomerSelectionCommonName

© 2015 – Brad A. Myers27

eSOA Documentation Results
• Multiple paths: unclear which one to use
• Some paths were dead ends
• Inconsistent look and feel caused immediate

abandonment of paths
• Hard to find required

information
• Business background

helped

(IS-EUD'2009)

© 2015 – Brad A. Myers28

Required Constructors
• Compared create-set-call (default constructor)

var foo = new FooClass();
foo.Bar = barValue;
foo.Use();

• vs. required constructors (immutable classes):
var foo = new FooClass(barValue);
foo.Use();

• All participants assumed there would be a
default constructor

• Required constructors interfered with learning
– Users wanted to experiment with what kind of

object to use first
• Preferred to not use temporary variables

(Stylos & Clarke, ICSE ‘2007)

© 2015 – Brad A. Myers29

New Project: API Usability & Security

• Collaboration with CMU’s Software Engineering
Institute (SEI)

• New NSF grant & SEI grant
• Sometimes usability ≅ security

– More usable  fewer mistakes
– E.g., Android and iOS apps misused Secure Sockets Layer (SSL)

or Transport Layer Security (TLS) due to difficulties with using
the APIs and had vulnerabilities [Fahl, CCS 2013]

• But sometimes usability ≠ security
– Mutability better for usability, worse for security

• How can usability research inform API design for security?
– Current study: Immutability in APIs – (PhD student Michael Coblenz)

• Interviews showed const, final, readonly, etc. are inadequate
• Future study: Error and exception handling

© 2015 – Brad A. Myers30

Azurite: Exploring Selective Undo

• PhD work of ISR student YoungSeok Yoon (May’2015)
• Azurite: Adding Zest to Undoing and Restoring Improves Textual

Exploration http://www.cs.cmu.edu/~azurite
• Work out meaning of selective undo for code

– Conflicting edits of same region of code
• Time-line visualization of all past operations
• Search through history (time) to find appropriate points

(VL/HCC’13,
submitted ICSE’15)

(VL/HCC’13 & ‘15,
ICSE’15)

© 2015 – Brad A. Myers31

Summary of Insights
• Field and lab studies can reveal the real issues

– Addressing these issues creates tools that are actually
useful

• Researcher’s intuitions about what might be useful
are often wrong

• Our experience highlights:
– Understanding the barriers can lead to more effective

tools
– Many user-centered methods can be successfully applied

to help understand developers and create better tools.
– Completely different ways to program mobile applications

are possible
© 2015 – Brad A. Myers32

Euklas:
Eclipse
Users’
Keystrokes
Lessened by
Attaching from
Samples

There are lots of Gemstones!
• And acronyms are fun!

C32
CMU's
Clever and
Compelling
Contribution to
Computer Science in
CommonLisp which is
Customizable and
Characterized by a
Complete
Coverage of
Code and
Contains a
Cornucopia of
Creative
Constructs, because it
Can
Create
Complex,
Correct
Constraints that are
Constructed
Clearly and
Concretely, and
Communicated using
Columns of
Cells, that are
Constantly
Calculated so they
Change
Continuously, and
Cancel
Confusion

PEBBLES
PDAs for
Entry of
Both
Bytes and
Locations from
External
Sources

GARNET
Generating an
Amalgam of
Real-time,
Novel
Editors and
Toolkits

For more, see: www.cs.cmu.edu/~bam/acronyms.html

Azurite:
Adding
Zest to
Undoing and
Restoring
Improves
Textual
Exploration

Fluorite:
Full of
Low-level
User
Operations
Recorded In
The
Editor

Apatite:
Associative
Perusing of
APIs
That
Identifies
Targets
Easily

Graphite:
GRAphical
Palettes
Help
Instantiate
Types in the
Editor

Calcite:
Construction
And
Language
Completion
Integrated
Throughout

Jadeite:
Java
API
Documentation with
Extra
Information
Tacked-on for
Emphasis

Jasper:
Java
Aid with
Sets of
Pertinent
Elements for
Recall

Crystal:
Clarifications
Regarding
Your
Software using a
Toolkit,
Architecture and
Language

Euclase:
End
User
Centered
Language,
APIs
System and
Environment

Aquamarine:
Allowing
Quick
Undoing of
Any
Marks
And
Repair
Improving
Novel
Editing

GNEISS:
Gathering
Novel
End-user
Internet
Services using
Spreadsheets

© 2015 – Brad A. Myers33

Thanks to:
• Funding:

– NSF under CNS-1423054, HCC-1314356, IIS-1116724, IIS-0329090, CCF-0811610, IIS-
0757511 (Creative-IT), and NSF ITR CCR-0324770 as part of the EUSES Consortium

– SAP
– Adobe
– IBM
– Microsoft Research RISE

• >32 students:
 Htet Htet Aung
 Jack Beaton
 Ruben Carbonell
 John R. Chang
 Kerry S. Chang
 Polo Chau
 Luis J. Cota
 Michael Coblenz
 Dan Eisenberg
 Brian Ellis
 Andrew Faulring
 Aristiwidya B. (Ika) Hardjanto

 Erik Harpstead
 Sae Young (Sophie) Jeong
 Andy Ko
 Sebon Koo
 Ashley Lai
 Thomas LaToza
 Tam Minh Le
 Joonhwan Lee
 Leah Miller
 Mathew Mooty
 Gregory Mueller

 Yoko Nakano
 Stephen Oney
 John Pane
 Sunyoung Park
 Chotirat (Ann) Ratanamahatana
 Christopher Scaffidi
 Jeff Stylos
 David A. Weitzman
 Yingyu (Clare) Xie
 Zizhuang (Zizzy) Yang
 YoungSeok Yoon34

Towards More Natural
Programming for Mobile and Touch

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

© 2015 – Brad A. Myers35

