
 1

Designers’ Natural Descriptions of Interactive Behaviors

Sun Young Park
School of Design

Carnegie Mellon University
sunyoung@cmu.edu

Brad Myers, Andrew J. Ko
Human Computer Interaction Institute

Carnegie Mellon University
bam@cs.cmu.edu, ajko@cs.cmu.edu

Abstract

While a designer’s focus used to be the design of

non-interactive elements such as graphics or anima-
tions, today’s designers deal with various levels of
interactivity such as mouse, keyboard and touch screen
interaction. Unfortunately, it is challenging for design-
ers to instantiate this diverse interaction since most
implementation tools such as Flash require the use of
conventional programming languages and do not sup-
port the natural expressions used by designers. Many
studies have shown that specifying interactive behav-
iors is a barrier for designers. To better understand
how designers think about interactive behaviors, we
conducted a lab study where designers and program-
mers described using their own language various
primitive and composite interactive behaviors. From
this, we learned that there is significant commonality
among designers in terms of the verbs, syntax, and
structure when describing interactivity. These results
can help guide the way to building more natural pro-
gramming languages and environments for designers
to facilitate the development of interactive behaviors.

1. Introduction
Designers wish to create innovative interactive be-

haviors. In our previous survey [10], when asked to
describe what they wanted to create, designers listed
complex interactive behaviors such as “Dynamic lay-
out based on user preference,” “An animated ‘lens
effect’ list UI,” and “Multi-dimensional selections that
impact the display of other controls and data.” Unfor-
tunately, current commercial tools for interactive be-
haviors seem to be focused on two approaches: either
the designer is given a very limited selection of behav-
iors to select from a menu (such as roll-overs and page
transitions in Dreamweaver, and the menu of 19 be-
haviors in the upcoming Thermo product from Adobe
[1]), or else the designer is assumed to only work on
the appearance, with the behavior being created by a
programmer using a conventional programming lan-

guage (this is the apparent workflow of Microsoft’s
Expression Blend).

Unfortunately, it is challenging for designers to ex-
plore the diverse interactive behaviors that they want
using either of these approaches. On the one hand, the
interactive tools are limited to very conventional be-
haviors, which our survey [10] suggests will not be
flexible enough for the types of behaviors that design-
ers want to implement. On the other hand, designers
find it difficult to use today’s programming languages
to program behaviors.

Is there a way to make the programming easier for
designers? When designing programming languages
and tools, one has to make certain design choices. In
the past, those design choices have often been made
for backward compatibility—for example, Flash’s Ac-
tionScript is based on JavaScript, with a syntax that
looks like Java, which looks like C. What if we instead
made design decisions based on how people think
about their domain of expertise? Is it possible to design
programming languages and tools that are closer to the
way designers naturally think? The psychology of pro-
gramming literature [5, 9] and previous studies [11,
13] have shown that this is possible and can make pro-
gramming easier: for example, HANDS was success-
fully designed for kids programming [12]and Click! is
a successful design for web developers [15]. We want

Figure 1: Two examples from our study of before
the user clicks the button (a), and after (b). For #9,
almost everyone used the same language: “the red
box appears”, but for #29, the language varied sig-
nificantly (“fades”, “becomes transparent”, “opacity
goes down”, etc.).

Submitted for Publication – do not cite or distribute

 2

to apply the same principles to discover what would be
natural for designers.

In this paper, we describe a study investigating how
designers describe interactive behaviors with words. In
addition, because our prior study [10] showed that
communication with programmers is an important part
of the process of designers’ work, the new study
compares the results of designers and programmers to
see where their expressions for behaviors are the same
and where they differ. The extent to which program-
mers and designers do not agree will help assess the
applicability of our results on different developer
populations.

Our study showed the participants many different
primitive and composite interactive behaviors (see
Figure 1) and asked them to describe what happens in
their own words, as if they were trying to instruct
someone else to implement the behavior. The partici-
pants were given three groups of questions: input that
causes a reaction questions, where they had to de-
scribe how the mouse and mouse buttons cause a be-
havior to operate (e.g., various responses to roll-over
and mouse button press); response questions, where
they were shown a set of simple behaviors and had to
describe each behavior (as shown in Figure 1); and
causality and time questions, where they were given
animated interactions and had to describe the relation-
ship between the objects. They answered all of these
questions with textual descriptions typed into text
boxes on the computer (see Figure 2).

The results suggest that there are some noticeable
commonalities in designers’ descriptions. They often
used the same verbs and other vocabulary to refer to
simple behaviors and actions, and used similar struc-
tures when describing an input and response. Design-
ers consider objects from a user-centric perspective
while programmers take a computer-centric view. The
study also uncovered different uses of modifiers in the
ways participants described time and properties, and
uses of physical metaphors to specify complex parame-
ters. We also found that designers consider object con-
stancy to be important—they preferred to describe the
changes as one object that morphs, rather than having
two different objects where one object disappears and
the other appears.

These observations help to explain some of the un-
derlying reasons why current tools and languages are
so difficult for designers to use, and suggest that refin-
ing the vocabulary and rules of expression in future
tools might improve the accessibility and usability of
programming languages for designers. In the rest of
this paper, we will detail our study process, findings,
and implications for improving future programming
environments for designers.

2. Related work
Studying people’s use of natural language to inform

the design of a programming language is not new. We
performed an early study with this goal, focusing on
understanding people’s descriptions of the rules and
behaviors in interactive games, as well as spreadsheet
relationships [13]. Since then, other domains have
been of interest. Rode [15] studied the domain of
server-side web development using a similar method-
ology, identifying the conflict between the people’s
stateful expressions and HTTP’s stateless nature.
Davis [4] gathered a collection of numerous informal
animations to study the primitive operations that peo-
ple want to express in certain contexts, finding a num-
ber of basic operators for expressing complex anima-
tions. Vronay and Wang [17] considered the domain of
morphing in animation, gathering people’s descriptions
of the shapes and transitions between a variety of
morphing examples. Most recently, Tullio et al. [16]
investigated people’s descriptions of the behaviors of
systems that rely on machine-learning algorithms.
Most of these studies inspired novel domain-specific
programming languages and authoring environments.

There are also a number of studies that explored the
way people think when doing visual design and inter-
action design. Alibali et al. [2] found that designers
externalize their mental models in drawings to relieve
burdens on working memory and planning. Sketches
are also way for designers to explore ideas, but they
are often annotated with words to describe behavior
[7]. Diagrams, which are laden with verbal descrip-
tions, are a central part of industrial engineering [8].
Our recent investigation into the newer role of “inter-
action designer” has found these same trends, but also
revealing the subtle interactions between the visual and
interactive details in designers’ process [10].

Even the most novel kinds of interaction design util-
ize conventions. For example, any interaction that uses
a mouse or keyboard is likely to be described using the
kinds of events produced by these input devices
(“click”, “mouse down”, etc.). The same is true of con-
ventional types of controls, such as buttons and menus.
These controls may also have a variety of transitions
between states, such as “rollover effects” or many of
the kinds of slide transitions that appear in presentation
software (“push”, “wipe”, “fade”). These conventional
types of behaviors are bound to influence the verbal
descriptions that we solicited in our study.

3. Method
In this lab study, all participants saw the same

screens in the same order. Before beginning the study,
participants filled out a questionnaire that asked about

 3

basic background information. Next, they answered 56
questions that were presented in a web browser. The
pages were implemented in Flash, and there were three
parts consisting of five web pages total (see Figure 2 as
an example*). Each part was preceded by an instruction
explaining how the buttons and question forms work
and introducing the format of the questions.

The instructions asked participants to describe all of
the interaction, states, and feedback that occurred by
typing into the textboxes. They were told that they
needed to be clear and precise enough in what they
typed that a developer could reproduce the behavior.
Participants were told that there was no time limit, and
there were no particular rules for what their answers
should contain. However, they were not allowed to
explain verbally or to draw pictures. The software col-
lected all of the participant’s edits (so we could see
when they went back and revised answers) as well as
the final text for each item and timestamps. As shown

* You can try out the study yourself at

http://www.cs.cmu.edu/~NatProg/CMU-behavior-study.swf

in Figure 2, the textual prompts for each question were
as brief as possible, so as not to influence participants’
word choice.

Each participant’s answer was analyzed by the fol-
lowing procedure: for Part 1, we mainly evaluated the
structure, voice and verbs that the participants used.
For Part 2, we mainly evaluated the nouns, verbs, and
parameters they used. For Part 3, we focused on the
relationship among objects. Since this was an explora-
tory study, we did not try to evaluate statistical signifi-
cance of any of the measures, and just looked for
trends.

After finishing the answers for all 56 questions, the
participants filled in a final questionnaire that asked
their opinions of the study and any final thoughts.

3.1. Specific questions
Part 1 focused on detailed interactions with mouse

input. The first four questions had the same response—
a number incrementing—but the interaction differed.
For #1, the action happened immediately on mouse
down. For #2, the button displayed roll-over behavior

Figure 2: One screen from the study after being filled in by a participant. For each question, the participant

clicks on the button, and then fills in the text field with a description of what happened.

 4

(it became grey when the mouse was inside the but-
ton), and the action happened on mouse button release.
For #3, the behavior was similar to #2, but there was
different feedback when the mouse button was pressed
down. #4 was similar to #3, but operated as a check
box, so a check toggled inside the button. Questions #5
and #7 in Part 1 were examples of linear and 2D con-
strained dragging, and #6 was a color selection grid,
with both roll-over and final feedback. Participants
were asked to describe all of the states, feedback, and
interaction that occurred for each button.

There were 43 questions across 3 pages in Part 2.
This section focused on describing the response of the
button, and we looked at what nouns, verbs, and pa-
rameters the participants used. The questions consisted
of a variety of interactive primitive behaviors mostly
using a red square (see Figure 2).

Finally, there were six questions in Part 3. This part
focused on causality and time. The questions consisted
of two changing entities that had a certain relation in
their behaviors. For example, the second object’s color
might depend on the first object’s color, or the length
of a bar might be the same as a number in a text box (a
third example is shown in Figure 3). Participants had
to describe the relationship between the two entities.

3.2. Participants
In addition to examining designers who are the tar-

get audience of our programming language, we were
interested in whether the results would generalize to
programmers, who are often part of designers’ teams.
Therefore, we recruited both designers and program-
mers to participate in the study.

16 volunteers participated, 10 designers (interaction
designers, information architects, web designers,
graphic designers), and 6 programmers. All of design-
ers had been exposed to Flash, 5 of them reported that
they were skillful at Flash, and 3 of them had some
experience with implementation (programming) as a
part of their job. None of programmers had used Flash,
but they had programmed as a part of their job and all
mainly used Java and C++. The study took about 1.5
hours, and participants were paid for their time.

4. Results
In analyzing participants’ verbal descriptions, there

were two types of analyses performed: first, there were
several specific questions that we wanted to answer,
particularly regarding differences between program-
mers and designers. Second, we explored the descrip-
tions holistically, looking for patterns in the language
used to describe the various examples in our study.
This section describes results from these analyses.

4.1. Object orientation
The notion of object constancy is important to de-

signers. From their descriptions, we found that design-
ers preferred to describe one object which morphs,
rather than using two objects with one fading or blend-
ing into the other. For example, we had four object
movements—first, the object jumped from one posi-
tion to another, in the next it slid smoothly, in the third
it disappeared from the first place and appeared after a
pause in the second place, and in the fourth, the second
object appeared first (so two objects were showing),
and then the first object disappeared after a pause. All
participants described the first three as movement of a
single object. It was only when we forced them to
think about two objects in the fourth condition (be-
cause both objects were visible on the screen at the
same time), that they described a second object (“an-
other red box”, “a copy of the red box”). Designers
seemed to assume that the second square would auto-
matically adopt the properties of the first (7 out of 10
said something like “a second red square”

This object constancy even persisted for changes to
objects that are not supported in today’s environments.
For example, when a square slowly changed to be a
circle, participants said the box “transforms”,
“changes” or “becomes” a circle. Similarly when we
showed text changing (when “Hello” changes into
“BYE”), participants described it as a single object
“morphing”, “changing” or “becoming” the new value.

In all of today’s programming environments and
graphical user interface (GUI) toolkits, some things
about objects can be changed as properties (e.g.,

Figure 3: A question from Part 3, in which participants described the relationship between the changes
to objects on the left and the changes to objects on the right. A play/pause button allowed participants
to start and stop the changes, which occurred at a frequency of typically once a second.

 5

rect.color = red;) and others are changed by
calling a method (e.g., rect.setRGB(0xFF0000) in
Flash). We did not find this distinction in participants’
answers – they seemed to use the concepts inter-
changeably. For example, sometimes they wrote
“…become italicized”, while other times, “the font
style changes into…” There was not even consistency
within the same person across answers. There was a
trend towards more use of methods for changing size,
shape and opacity, when there were special words to
describe the desired change, such as “increase”,
“grow”, “zoom in/out”, “stretch”, “expand”, “extend”,
“fade in/out”, etc. Participants used properties more
when the relevant words were adjectives rather than
verbs, such as for colors: “the color of red button
changes form red to blue”, but often the parameter was
unspecified since it is implied by the value: “The red
square turns blue”.

Another interesting pattern was the notion of the
origin of objects. In terms of an object’s size change,
participants considered the center to be the default po-
sition. When they were shown the size change of the
object that gets smaller into the center point, they did
not pay attention to or mention the point. However,
when the change happened from a different point, then
they explicitly mentioned from where the object
changed. This is different from how GUI toolkits
work, which change size from a corner by default.

We also observed that designers have the contextual
concept of defining the “Z” order of objects by using
the terms “front” and “back.” Programmers also ex-
hibit this tendency, but they use simpler definitions
such as “on the top.” This is also connected with the
concept of layers, which is used as one of the terms in
graphic tools such as Photoshop or Illustrator. Three
out of 10 designers interviewed defined the order of
objects by using the term “layer.”

4.2. Naming and Metaphors
There were many observable commonalities in the

terms that designers used in their descriptions in Part 2
of our study. Every designer used the same terms for
some behaviors, including “appears/disappears” and
“fade in/out”. When describing other behaviors, the
range of terms became broader, such as: “extend”, “ex-
pand”, “increase”, “grow”, “enlarge”, “become larger”,
etc. Programmers used much more varied language,
and it was difficult to find much commonality in the
vocabulary used.

Designers used familiar names for property changes.
For instance, they use names such as “mask” (5 out of
10), and “wipe effect,” “wipe transition” (3 out of 10).
However, none of the programmers used these expres-

sions to describe the same behaviors. They used more
verbose descriptions, such as “…get filled” or “appears
and extends to the right.” This difference indicates that
since designers are familiar with graphic tools such as
Photoshop, PowerPoint, or Keynote, they use terms
used in those tools when they see similar concepts in
behaviors, whereas programmers are more likely to use
terms from GUI toolkits.

However, when all participants did not know the
name of a behavior, they tended to use metaphors and
concrete examples rather than descriptions of the de-
tails of the behavior. The metaphors were usually sig-
naled by a clear syntax, such as starting with “as if…”
or “like…” For example, “As if the door opens up into
you,” “As if spinning,” “As if falling backward,” “Like
an automobile,” and “Like a flat piece of cardboard.”.

4.3. Syntax
In addition to the structure of the participant’s an-

swers, we were also interested in the particular syntax
they used (what word order and special characters).
For example, when setting the value of parameters,
almost all participants (9 out of 10 designers, and 6 out
of 6 programmers) used “…of” as a syntax rather than
using a possessive “…’s.” For example, they used “the
color of a red box” rather than “a red box’s color.”

The participants occasionally used quotation marks
or parentheses in their descriptions. They sometimes
(but not always) use single or double quotation marks
when indicating some specific text (as in “sans serif
"design" changes to serif”) or when they want to em-
phasize specific behavior among the multiple behav-
iors occurring simultaneously. They also sometimes
seemed to use quotation marks to signify metaphors.
For instance, they described that “the square "opens"”
or “"tips over".” They also used parentheses to add
detailed information such as numerical values or re-
lated concepts. For instance, “move (no transition, no
sliding)” or “become transparent (50%).” While de-
signers use syntax in a casual way, programmers had
more syntactic consistency. Most programmers used
double quotation marks to indicate a specific text
string. This shows that programmers’ knowledge of
coding conventions affected their descriptions.

4.4. Modifiers
As we described in the previous section, designers

had a considerable commonality in terms of using
terms to describe simple behaviors. In addition, we
found that when the behaviors get complicated, they
tended to use modifiers on those common verbs to
describe subtle differences in interactivity and motion.
Modifiers described how an object moved or appeared.

 6

For example, “appears by fading out,” or “moves to
the right.” Participants also used modifiers for object
changes that happen over time, such as “appears im-
mediately” or “fading out slowly.”

It was interesting that participants sometimes used
general modifiers (“gradually”) and other times pro-
vided precise numbers (“doubles in thickness”). Some-
times the numbers were modified to be less precise
(“about 25%”).

4.5. Relation between entities
In Part 3 of our study, participants had to describe

the relationship between entities. In our earlier study of
children’s expressions, we saw a preponderance of
event-based behaviors [13]. However, in the present
study, we found that it was hard to separate whether
designers found event-based expression or constraint-
based expressions more natural. Many modern pro-
gramming environments support both kinds of specifi-
cations. For example, in Flash, you can use event han-
dlers where you program a property change in an event
handler. Alternatively, you can use dynamic values to
tie the properties of two objects together, so the system
maintains this constraint for you.

In our study, designers seemed to use a mixture of
both kinds of expressions. However, if there was some
time delay between the entities, designers tended to
mention the time value, as in “…a second after the first
one” or “…immediately after” (4 out of 10). Also,
some designers with less interaction design experience
(i.e., conventional graphic designers) tended to avoid
using constraints expression and used event-based ex-
pressions if there was a time delay (e.g. “The right box
changes colors immediately after the left box”). How-
ever, this time delay did not affect the programmers’
expressions. Most of the programmers used constraint-
based expressions and described the relationship very
simply for all of the questions in Part 3.

We looked at the structure when designers used an
event-based expression. They referred to things in re-
verse order such as “…that B happens after A” rather
than “after A, then B happens…”, whereas the latter is
the way you would have to express it in all event lan-
guages today. For instance, “The box on the right is
changing color a fraction of a second after the first
one,” “The square on the right changes color to match
the square on the left, after a slight delay.” Note that
this is consistent with our results of section 4.1 and of
previous work [11] that showed that people prefer to
express the main object first and then exceptions and
modifiers afterwards. Likewise, while programmers
hardly mentioned time values, many designers used

time to emphasize that the relationship of entities is
repeating.

 There are some differences in the range of verbs
used by designers for the properties that depended on
the other object, although most used “change” of a
property. However, they used a variety of terms to
refer to the number that controls the property that
changes: “correspond”, “correlate”, “reflect”,
“change”, “display”, “refer”, “indicate”, “equal”,
“show”, and “represent.”

Two of the questions required participants to refer to
a set of objects. Consistent with our prior results [11],
participants operated on the entire set without adding
control structures (for example, “position of the largest
circle”, or “the number of red triangles”).

4.6. State transitions
In Part 1, we performed within subject comparisons

on a set of questions that ask respondents to describe
the states, feedback, and interactions of different levels
of complexity for responses to the mouse. In these
comparisons, we found that the more complex the be-
havior, the less accurately designers described the
states. This difference was clearer in designers with
less implementation ability. Table 1 indicates that all
designers accurately described every state of first two
simple behaviors. However, from the interactions that
had four or more states, the number of designers who
gave accurate descriptions was drastically reduced.

Number of states (complexity

of button behaviors)

1

2

4

8
Number of correct answers
from designers (out of 10)

10

10

4

0

Table 1. The accuracy in describing the states in
button behaviors

Programmers had an easier time describing complex

interactions. While designers tried to explain the re-
sponse and feedback by describing the appearance,
programmers tended to mention the function. For ex-
ample, for #4 that included a checkmark and both roll-
over and separate mouse press behaviors, many pro-
grammers described the behavior by referring to “a
check-box” to imply its function. They also used the
term “toggle” to refer to the interaction. However, de-
signers often missed several states by focusing on the
appearance of feedback, not necessarily its complete
function. This is consistent with what we have seen on
commercial web sites, where often the implementa-
tions will do the wrong thing if, for example, the user
presses down inside a custom-built button, moves out-
side and then releases.

 7

We also looked at the vocabulary used to refer to the
states of the interactions. Whereas programmers
mostly use the term “mouse over,” the designers used
various words for this, such as “cursor over,” “mouse
over,” “roll over,” “hover over,” and “mouse in.”

Another significant finding in Part 1 is the difference
between designers and programmers in terms of the
order in which interactions are described. Designers
describe the order in which a user uses a button. For
instance, they started with “When a user moves a
mouse over the button…” This suggests that designers
have a user-centric perspective and seemed to focus on
what the user does. However, programmers described
these same behaviors by first defining the function and
then talking about the actions done with the mouse.
For example, “Implement the button which on clicking
increments count starting from num 1, … when the
button is pressed down…” This suggests that pro-
grammers have a computer-object-centric point of
view, the opposite of the designers.

Another conceptual difference between designers
and programmers is their approach to the problems.
Almost all of the programmers (five out of six)
mentioned the initial value, saying, for example, “in-
crements count starting from no 1,” or “The number
begins in 1.” However, none of designers mentioned
the starting value explicitly. Few of the designers (3
out of 10) referred to numbers such as “1 is added to
the number” but the majority described it in general
terms, such as “the numbers appear and count.”

This part suggests that designers and programmers
have different approaches due to their different back-
grounds. Designers are more focused on describing the
input-feedback relation and its look in a general way,
rather than describing the behavior in a specific order
like in a programming language.

5. Discussion and Implications for Future
Many of the study results suggest new kinds of lan-

guage features. For example, the object constancy and
object property results suggest a new form of object-
oriented programming, which blurs the line between
data and behavior. Objects should be highly malleable,
allowing moving, growing, morphing, and manipula-
tion by lots of expressive primitives. For example, it
might be useful to include many of the PowerPoint and
Keynote transitions and object animations, but making
them polymorphic so that they can be used for object
transformations. This should apply to allow morphing
of all properties of an object, including its shape.

Furthermore, the expression of the changes should
be allowed either as methods or as properties obtaining
new values (e.g. the “visible” property might take a

number instead of a Boolean to support fading out, the
X and Y positions might be set to a path instead of to
an integer, etc.). As in HANDS [12], the target of the
operation could be set of objects instead of a single
object, for example to move or count a set of objects
without requiring the creation of extra data structures.

Changes to objects should be allowed to occur im-
mediately or slowly (e.g. fade-out should be similar to
becoming invisible). This is similar to the functioning
of Alice, in which all properties can change over time
[14], but unlike Alice, allowing such changes to be
fine-tuned through parameters. For example, a move-
ment could be modified to have a specified path, or a
color change could be modified to be a gradient. Given
that designers wanted new objects to be similar to ex-
isting objects, allowing a modifier to reference existing
objects might be natural (e.g., to change color to be
like another object).

Most participants (designers a bit more than pro-
grammers) sometimes described the modifiers for the
changes as a metaphor. The idea of using metaphors
has been an accepted practice for graphic tools [3][6],
and current tools such as PowerPoint and Keynote
have many functions, such as transition behaviors,
which use metaphors. However, these kinds of meta-
phors have not been used as part of a programming
language. Possibly, physical metaphors such as an un-
derlying parameterized physics engine might be in-
cluded (as is available in game engines). It might pro-
vide movements that conform to various real-world
situations, such as gravity, bouncing, etc. Just as inter-
esting would be language mechanisms for “breaking”
these rules of physics (defying gravity, etc.) to achieve
some of the subtle effects desired in by participants in
our prior study [10].

Although our study did not reveal a strong tendency
towards event-based or constraint-based expressions,
our results do suggest that the only perceived differ-
ence between the two is whether there is a delay be-
tween a change its resulting effects. This suggests the
need for a more flexible kind of language construct
that allows the expression of relationships that occur
on a variety of time scales.

6. Threats to Validity
The main issue with the generalizability of the re-

sults is the small sample size and the informal analysis
techniques. We feel comfortable using our recommen-
dations and observations to guide further studies and
language designs, but there is certainly no guarantee
that an environment that takes advantage of them will
be better. Clearly, any system created based on these
findings will need to be evaluated.

 8

Since this was a limited lab study, the results cannot
fully cover the designers’ pure and natural language,
since the study environment was fixed and participants
were asked to type into small text boxes. In many
cases, the most natural way for the designers to express
these behaviors would instead be to draw pictures or
create animations like those we presented to them.

All of the designers in our study had some exposure
to interactive programs like Flash, which may have
biased their answers. However, this is the same as the
target audience for our future tools. Another concern is
that all participants were students at Carnegie Mellon
University, so they might have similar experience and
instruction. However, they have quite varied back-
grounds before coming to Carnegie Mellon, which
hopefully mitigates this concern.

7. Conclusions
Based on the results of this and other similar studies

[11, 13], it seems clear that this kind of investigation
can reveal interesting insights into how a target audi-
ence thinks about programming concepts. When a new
language or environment is being designed, having
such knowledge can only be helpful as one of the con-
siderations, so we recommend this methodology as a
precursor to future domain-specific designs.

The current study of what is natural for designers
when expressing interactive behaviors provides more
scientific insight for choosing among design alterna-
tives in tools for designers. We plan to use these re-
sults to guide the design of a new programming lan-
guage and system for designers and expect that the
results reported here will produce a language that is
easier to learn and use than other languages. In addi-
tion, the result reported here can be used by developers
to assist in the design of other kinds of tools.

Acknowledgements
Thanks to Adobe for financial support and advice

for this research.

References
[1] Adobe Systems Incorporated, “Product Codename:

'Thermo',” 2008.
http://labs.adobe.com/wiki/index.php/Thermo.

[2] Alibali, W., Bassok, M., Solomon, K.O., Syc, S.E., and
Goldin-Meadow, S., “Illuminating mental representation
through speech and gesture.” Psychological Science, 1999.
10: pp. 327–333.

[3] Carroll, J.M., Mack, R.L., and Kellogg, W.A. “Interface
Metaphors and User Interface Design,” in Handbook of Hu-
man-Computer Interaction. 1988. Elsevier Science Publish-
ers B.V. (North Holland). pp. 67-85.

[4] Davis, R.C. and Landay, J.A. “Informal Animation Sketch-
ing: Requirements and Design,” in AAAI 2004 Fall Sympo-
sium on Making Pen-Based Interaction Intelligent and Natu-
ral. October 21-24, 2004. pp. 42-48.

[5] Green, T.R.G. and Petre, M., “Usability Analysis of Visual
Programming Environments: A 'Cognitive Dimensions'
Framework.” Journal of Visual Languages and Computing,
1996. 7(2): pp. 131-174.

[6] Halasz, F. and Moran, T.P. “Analogy Considered Harmful,”
in Conference on Human Factors in Computing Systems.
1982. Gaithersburg, MD: pp. 383-386.

[7] Heiser, J., Tversky, B., and Silverman, M., “Visual and
spatial reasoning in design,” in Sketches for and from col-
laboration, 2004, pp. 69 – 78.

[8] Henderson, K., On Line and On Paper: Visual Representa-
tions, Visual Culture, and Computer Graphics in Design
Engineering. 1998, The MIT Press.

[9] Hoc, J.-M., Green, T.R.G., Samurçay, R., and Gilmore, D.J.,
eds. Psychology of Programming. 1990, Academic Press:
London.

[10] Myers, B., Park, S.Y., Nakano, Y., Mueller, G., and Ko, A.
“How Designers Design and Program Interactive Behav-
iors,” in Submitted for Publication. 2008.

[11] Pane, J.F. and Myers, B.A. “Tabular and Textual Methods
for Selecting Objects from a Group,” in Proceedings of VL
2000: IEEE International Symposium on Visual Languages.
September 10-13, 2000. Seattle, WA: IEEE Computer Soci-
ety. pp. 157-164.

[12] Pane, J.F. and Myers, B.A. “The Impact of Human-
Centered Features on the Usability of a Programming Sys-
tem for Children,” in CHI. Apr 1-6, 2002. Minneapolis, MN:
pp. 684-685. http://www-2.cs.cmu.edu/~pane/research.html.
Extended Abstracts for CHI'2002.

[13] Pane, J.F., Ratanamahatana, C.A., and Myers, B.A.,
“Studying the Language and Structure in Non-Programmers'
Solutions to Programming Problems.” International Journal
of Human-Computer Studies, February, 2001. 54(2): pp.
237-264. http://www.cs.cmu.edu/~pane/IJHCS.html.

[14] Pausch, R., Burnette, T., Capehart, A.C., Conway, M.,
Cosgrove, D., DeLine, R., Durbin, J., Gossweiler, R., Koga,
S., and White, J., “Alice: A Rapid Prototyping System for
3D Graphics.” IEEE Computer Graphics and Applications,
1995. 15(3): pp. 8-11. May.

[15] Rode, J. and Rosson, M.B. “Programming at Runtime:
Requirements and paradigms for nonprogrammer web appli-
cation development,” in IEEE Symposium on Human-
Centric Computing Languages and Environments. 2003.

[16] Tullio, J., Dey, A.K., Chalecki, J., and Fogarty, J. “How IT
works: a field study of non-technical users interacting with
an intelligent system,” in CHI '07: Proceedings of the SIG-
CHI conference on Human factors in computing systems.
2007. San Jose, CA: pp. 31-40.

[17] Vronay, D. and Wang, S. “Designing a compelling
user interface for morphing,” in CHI'2004: SIGCHI Confer-
ence on Human Factors in Computing Systems. April 24 -
29, 2004. Vienna, Austria: pp. 143-149.

