

Apatite: A New Interface for Exploring APIs

ABSTRACT

We present Apatite, a new tool that aids users in learning

and understanding a complex API by visualizing the com-

mon associations between its various components. Current

object-oriented API documentation is usually navigated in a

fixed tree structure, starting with a package and then filter-

ing by a specific class. For large APIs, this scheme is overly

restrictive, because it prevents users from locating a par-

ticular action without first knowing which class it belongs

to. Apatite’s design instead enables users to search across

any level of an API’s hierarchy. This is made possible by

the introduction of a novel interaction technique that

presents popular items from multiple categories simulta-

neously, determining their relevance by approximating the

strength of their association using search engine data. The

design of Apatite was refined through iterative usability

testing, and it has been released publicly as a web applica-

tion.

Author Keywords

API Documentation, Search tools, Browsing, Visualiza-

tions, Web applications.

ACM Classification Keywords

D.2.7 [Software Engineering]: Documentation; D.2.2 [Pro-

gramming Languages]: Design Tools and Techniques –

Software libraries.

General Terms: Documentation, Human Factors.

INTRODUCTION

Modern software engineers spend much of their develop-

ment time using existing libraries, frameworks, and other

Application Programming Interfaces (APIs). Over time,

these APIs have greatly increased in number and in size.

APIs like the Microsoft .NET Framework and the Java

SDK contain thousands of classes and tens- to hundreds of

thousands of methods and grow larger with every new ver-

sion.

Exploring these new APIs and learning how to use them has

become a daunting task. Many APIs are so large that no one

person can be familiar with the entire system, so even expe-

rienced developers are often faced with the task of finding

and understanding an unfamiliar part of an API. Program-

mers will often use web search engines like Google to help

find which parts of the APIs to explore in more depth; how-

ever, studies have found this to be a powerful but imperfect

strategy [6]. The web contains many relevant programming

discussions and examples, but it also contains many irrele-

vant and unhelpful pages.

A popular strategy for learning APIs is to explore the offi-

cial documentation, usually in a standardized format like

Javadoc. Javadoc displays a hierarchy of all of the pack-

ages, classes, and methods of an API, but usually provides

few cues besides the alphabetically listed package and class

names to help users decide which classes to investigate.

Studies of existing API documentation [1,4] have suggested

that these hierarchies are insufficient when programmers

have in mind a desired action but possess no knowledge of

which class it might belong to. For example, programmers

attempting to read from a file often begin by looking for a

read() method. However, the File class does not con-

tain any such method, and Javadoc provides no cues to in-

dicate which of the many other classes in

java.io are capable of performing this action.

This suggests that documentation interfaces can be im-

proved by offering an alternative to the top-down, encapsu-

lation-based browsing hierarchy that is usually employed.

Apatite (Associative Perusal of APIs That Identifies Tar-

gets Easily) was designed with this idea in mind, and incor-

porates a number of novel features and interaction tech-

niques. First, it provides all information in a graph, not a

hierarchy, so users can go from one item to all associated

items. Second, the items shown are filtered by popularity of

usage, focusing the user’s attention on the most likely an-

swers. Third, given a selection of any item, Apatite initially

shows the most popular related items in multiple categories.

This quickly gives users an overview of the items, and pro-

vides affordances for drilling into any category. Fourth,

users can explore an API by starting from methods and ac-

tions (the verbs) as well as properties, not just starting from

classes or packages (the nouns) as in Javadoc.

Daniel S. Eisenberg, Jeffery Stylos, Brad A. Myers
School of Computer Science

Carnegie Mellon University

dse@andrew.cmu.edu, jsstylos@cs.cmu.edu, bam@cs.cmu.edu

http://www.cs.cmu.edu/~apatite

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

DESIGN INSPIRATION
Apatite is heavily inspired by the associative browsing tool

Feldspar [2]. Feldspar provides an interface to browse per-

sonal information like email, contacts, and events based on

association rather than textual search. Employing a multi-

column browsing interface, Feldspar enables users to filter

a list by arbitrary dimensions in an arbitrary order (e.g.,

people mentioned in an email about an event last year),

eliminating the need to remember specific details or enter

any text queries.

The complication in adapting Feldspar to browsing a large

API like the Standard Java 6 API is the sheer number of

classes and methods to choose from; as noted above, users

benefit from cues that differentiate between components

that are commonly used and those that are obscure and/or

irrelevant. The Jadeite Java documentation system [7] and

other new work [3] provide inspiration for addressing this

issue. Jadeite uses font sizes as they are employed in “tag

clouds” by representing popular items with larger text. This

feature proved to be very effective in the context of Java-

doc-like documentation in Jadeite’s user study. This idea,

combined with Feldspar's interaction style, are the primary

elements in Apatite’s design.

INTERFACE AND USAGE

Figure 1 provides an overview of Apatite’s interface when

configured to browse the Standard Java API. When the tool

is first initiated, only the column on the far left is visible.

The column presents five categories, each of which

represents a different “type” of API item that the user may

want to start the search from: packages, classes, methods,

actions, and properties. Under each header of this initial

column, the four most popular items are listed alphabetical-

ly. A larger font size indicates a more popular item. For

example, from the first column in Figure 1 we can see that

Object is a more popular class than List because it is

printed in larger text. If the user does not see an item of

interest, the “+” sign can be clicked to expand a section.

Alternatively, the user can type into the search box at the

top if part of a component’s name is already known.

When the user selects an item, a new column is generated

immediately to the right. The categories here are the same,

but now all of the items are ranked according to how

strongly they are associated with the initial selection. For

example, in the figure, the Name property is strongly asso-

ciated with the java.io package. (See the following sec-

tion for an overview of how these associations are calcu-

lated.)

The user can continue on from here, iteratively generating

columns of associated items until the desired component is

found. Figure 1 illustrates how a programmer might inves-

tigate how to read a line of data, progressing from the read

action to the readLine method and finally to the Buf-

feredReader class. Associations apply over multiple

columns, so results that are related to all of the previous

few selections will be ranked higher than results that are

related to only some of the previous few selections. In Fig-

ure 1, BufferedReader is highly correlated with all of

java.io, read, and readLine.

This example also demonstrates several advantages that

Apatite has over traditional documentation schemes. In

addition to providing the ability to start browsing from any

place in the API hierarchy, Apatite exposes the user to

Figure 1. An Apatite use case demonstrating its core functionality. The user is looking for a class that is capable of reading lines

from an external source. Initially, only the column on the left is visible. When the user clicks an item, a new column appears to its

right containing elements that are associated with that selection.

many other useful components associated with any selected

item, thereby fostering a better understanding of how the

API fits together. For instance, from Figure 1 we can see

that the close method is often called near readLine and

that the java.sql package also contains methods for

reading data.

Apatite also allows users to easily backtrack along a specif-

ic search path and explore other interesting options. Click-

ing on an item in a previous column clears away all subse-

quent columns and continues the associative browsing from

that point. Apatite automatically scrolls the page horizontal-

ly as the number of columns becomes large, allowing for

arbitrarily long search paths while preserving access to all

previous selections.

Extended Accordion Interaction

One novelty of Apatite’s interface is its mechanism for

drilling down into particular categories. As mentioned ear-

lier, clicking the “+” in a category header expands that sec-

tion’s list to show the top 15 items. Doing so collapses the

remaining categories, focusing the interface on the single

extended list (see second column of Figure 2). The selected

category can be expanded further, showing the top 30, 60,

etc. items. Clicking the “-” in the header, or clicking on a

different header returns the column to its initial state.

This interaction resembles typical “accordion”-style con-

trols commonly found in web applications; however, it is

unique in that it allows the user to initially view a few ele-

ments from all categories simultaneously. This feature

gives users an overview of relevant items from a variety of

categories and also provides an affordance for easily brows-

ing through associations without being restricted to walking

down specific paths of the hierarchy (such as the Package

ClassMethod path provided by Javadoc).

This interaction technique also allows users to easily go up,

down and across the API hierarchy. For example, the user

can select an action, see what methods implement that ac-

tion, see what classes contain that method, and then see

what other methods are often used in each class.

Additional User-Inspired Features

Throughout Apatite’s development, we performed a num-

ber of user studies to gauge the tool’s potential and discover

which aspects were in need of improvement. The current

design is the result of an iterative design process that has

addressed many issues that were identified by preliminary

users.

The ability to search a column for particular keywords was

added since it was a highly requested feature, allowing us-

ers to quickly jump to a particular item if they already have

one or more words in mind. Filtering occurs instantaneous-

ly – the column’s content adjusts with each additional keys-

troke, providing continuous results as the user refines the

query. The search mechanism also handles multiple key-

words by modifying the ranking system to reflect how

many of the keywords each item matches. For example,

given a search query of “data stream,” classes containing

both the “data” and “stream” keywords are printed in larger

text than classes containing only a single keyword, although

the relative popularity of each item is still reflected by text

size within each classification.

Apatite also helps users learn about a particular API com-

ponent in more depth. When the user hovers over a particu-

lar item, a “?” link appears to the right of its name. Hover-

ing over the “?” displays a description of that item, with

details varying depending on its category. For example, for

a method in a class, the popup will contain its signature and

Javadoc description (see Figure 2). Clicking on the “?”

brings the user directly to the full Javadoc documentation.

When a method or class is not unique, such as methods with

multiple signatures, or when a method is selected where the

class is ambiguous, then the popup shows how many differ-

ent implementations exist, and clicking on the “?” brings

the user to an intermediate page which provides links to

each Javadoc entry that may be relevant.

Early users also wanted a better understanding of the rela-

tionships that Apatite tracks, so in the current version, roll-

ing over an item provides a brief textual description of its

relationship to the previous selection. This functionality is

shown in Figure 1 – rolling over BufferedReader pro-

vides the explanation that it contains an implementation

readLine, which had been selected in the previous col-

umn.

We have also provided a mechanism for explicitly choosing

which types of relationships are displayed whenever mul-

tiple types of associations are represented in a single list.

For example, the final column of Figure 1 is displaying

classes that fall into three different categories: object types

that are returned by readLine, object types that are ar-

guments of readLine, and object types that implement the

readLine method. If the user wants to view only a par-

ticular type of relationship, the “FILTER” link can be

clicked to specify this in the resulting dialog box.

Figure 2. Demonstration of accordion expansion, text

searching and informational popups.

IMPLEMENTATION

A comprehensive description of Apatite’s implementation

is beyond the scope of this note (see [5] for a full explana-

tion). However, the technique by which we determine the

strength of association between pairs of API items is espe-

cially notable since it is fundamental to Apatite’s overall

effectiveness. The reason for designing Apatite as an asso-

ciative search tool is to help guide the user towards API

components that are commonly used together. Therefore,

all of the associations have been derived from actual usage

data collected from various public search engines.

The overall popularity of each API item, which is used by

the initial column to display the most commonly used pack-

ages, classes, and methods, are determined by comparing

the number of total Google results when searching for each

item’s fully qualified name. This technique had previously

been used for the Jadeite tool, with effective results. The

popularity of each action and property is simply the sum

over all popularities of its respective methods (e.g. Popular-

ity(read) = Popularity(readInt()) + Popularity(read-

Line()) + …). A method is categorized as an action if its

first camel-case word is a verb.

To estimate the strength of association between two API

items, we used a new heuristic. For each possible pair of

methods, we counted the number of times one method’s

name appeared in the first 100 Yahoo! search results of the

other method. The result is an approximation of how often

the methods are used together in actual code.

All other association strengths are calculated from these

two heuristics. When one item is encapsulated within

another, only the overall popularity is used (e.g., when the

ArrayList class is selected, the method category in the

next column displays all of its methods ranked by their

overall popularity). In all other cases, each item is decom-

posed into its implemented methods and the second heuris-

tic described above is summed over each possible pair; this

is then combined with the compared item’s overall popular-

ity to determine a final value. For example, to calculate how

strongly the StringBuffer class is associated with the

BufferedReader class, the association values between

the methods that they implement are summed together, and

then this number is weighted by the overall popularity of

StringBuffer.

DEPLOYMENT

In June 2009, Apatite was released publicly as a web appli-

cation and began receiving an increasing number of users.

Among repeat users, the most popular feature has been the

search function; users are commonly using Apatite to

quickly determine whether a class or method exists with a

name containing a particular keyword.

The public application is periodically updated with new

data and features. Please try out Apatite for yourself:

http://www.cs.cmu.edu/~apatite.

CONCLUSION AND FUTURE WORK

We believe Apatite has the potential to provide many addi-

tional contributions to the field of API usability. If deployed

on a large scale, Apatite can be used to track common asso-

ciation patterns that are navigated by users. This could be

used to aid API designers by revealing common use cases

and helping them think ahead of time about which classes

and methods will likely be used together.

Apatite’s interface can be used to display any set of items,

and there are many possible datasets that we feel would be

interesting to browse in an associative way.

Finally, although we initially have targeted users who al-

ready know how to program, we believe Apatite might also

be useful to those just learning how to program. A modified

version for that audience might use nouns and verbs as the

primary search categories and help learners build a clear

mental model of how an API works. We are also exploring

how to better extract verbs from Javadoc method descrip-

tions and adding these words to the actions category.

ACKNOWLEDGEMENTS

This work was funded in part by a grant from SAP, and in

part under NSF grants CCF-0811610 and CCR-0324770.

Any opinions, findings and conclusions or recommenda-

tions expressed in this paper are those of the authors and do

not necessarily reflect those of the NSF.

REFERENCES

1. Beaton, J., Jeong, S.Y., Xie, Y., Stylos, J. and Myers,

B.A. “Usability Challenges for Enterprise Service-

Oriented Architecture APIs,” VL/HCC’08. Sept, 2008,

Herrsching am Ammersee, Germany. pp. 193-196.

2. Chau, D.H. and Myers, B. “What to Do When Search

Fails: Finding Information by Association”, Proceed-

ings CHI’08. Florence, Italy, April, 2008. pp. 999-1008.

3. Holmes, R. and Walker, R.J. “A Newbie’s Guide to Ec-

lipse APIs”, International Working Conference on Min-

ing Software Repositories. pp. 149-152.

4. Jeong, S.Y., Xie, Y., Beaton, J., Myers, B.A., Stylos, J.,

Ehret, R., Karstens, J., Efeoglu, A., and Busse, D.K.

“Improving Documentation for eSOA APIs Through

User Studies”, Second International Symposium on End

User Development (IS-EUD’09), March, 2009. Siegen,

Germany. Springer-Verlag, LNCS 5435, pp. 86-105.

5. Stylos, J. “Making APIs More Usable with Improved

API Designs, Documentation and Tools.” Ph.D. thesis,

Carnegie Mellon University, May 2009.

6. Stylos, J. and Myers, B.A. “Mica: A Programming Web-

Search Aid”, VL/HCC’06. Sept, 2006, Brighton, UK.

pp. 195-202.

7. Stylos, J., Faulring, A., Yang, Z., and Myers, B.A. “Im-

proving API Documentation Using API Usage Informa-

tion”, VL/HCC'09, Sept, 2009. Corvallis, Oregon. pp.

119-126.

