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Abstract  
Researchers have paid increasing attention in recent years 
to the fact that much development occurs though example 
modification. Helping programmers with some of the pit-
falls and vagaries of working with example code is the goal 
of our tool, called Euklas. It helps developers to integrate 
JavaScript example code into their own projects by using 
familiar IDE interaction techniques of the Eclipse IDE. The 
Euklas plugin uses static, heuristic source code checks to 
highlight potential errors and to recommend potential fixes, 
when incomplete sections of code are copied from a work-
ing JavaScript example and pasted into the program being 
edited. The most unique feature of the tool is the ability to 
automatically import missing variable and function defini-
tions from an example file into a new project file. Our 
preliminary user study of Euklas suggests that it supports 
users in fixing errors more easily. 

Categories and Subject Descriptors D.2.6 [Program-
ming Environments]: Programmer workbench. 

General Terms Algorithms, Design, Human Factors 

Keywords  Code Reuse, Copy-and-Paste, JavaScript, 
Eclipse, Natural Programming, Examples 

1. Introduction 
Leveraging examples is an established technique in design 
[1], and has recently received increasing attention from 

researchers focusing on programming tools [2-5]. With the 
rise of search engines and web repositories of code along 
with discussion threads, blogs, and code example websites, 
people often create new systems by copying and pasting 
code snippets from such sources [6]. Surveys and research 
show that looking for examples is often people’s preferred 
way to learn how to perform a task or to learn how to use 
application programming interfaces (APIs) [7].  

Most of the research on reusing examples has focused 
on building improved search and data mining tools to help 
with finding the examples (e.g., [1, 3, 5, 7, 8]). However, 
there has not been much research on assisting users in reus-
ing and integrating the examples after they have been 

Figure 1. Euklas supports peoples’ integration attempts as it 
enhances Eclipse’s JavaScript editor by (#1) highlighting errors in 
the source code, (#2) providing quick fixes including the use of 
the context in the origin of any copied code, and (#3) including 
explanations for copy-and-paste errors based on the code of the 
example snippet that was used. 
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programming experience. Participants in all groups re-
ceived a spoken introduction to the study and signed the 
consent form. All participants were briefly introduced to 
Eclipse’s JavaScript editor. Members of the experimental 
groups received an additional introduction to Euklas’s 
extensions to Eclipse’s JavaScript editor, e.g. information 
about its error and warning markers and the quick fixes. All 
task descriptions explained which code should be copied 
and what the desired results would be after the code was 
pasted and all errors were fixed. 

All participants performed the tasks in the same order. 
The tasks were designed to cover all cases in which Euklas 
provides support, as well as cases where it provides mis-
leading help or does not help at all. Participants were al-
lowed to work on each task for a fixed amount of time, 
which varied from 7 to 20 minutes, based on the task’s 
difficulty. The researcher who conducted the study meas-
ured the time it took participants to work on each of the 
tasks and stopped them if they ran over the maximum time 
allowed for each task. 
Task No. of  

Errors 
Types of 
Errors* 

Source 
LOC 

Copied 
LOC 

Max. Time 
(min.) 

1 1 2 112 10 7  
2 3 2, 3  112 13 7 
3 2 1, 2 122 29 7  
4 3 2, 5, 6 103 5 10  
5 5 3, syntax 

error 
218 125 12  

6 10 2, 3, 4 1507 996 20  
Sum 24  2174 1178 63  

Table 1.  Summary of the tasks (*types of errors ac-
cording to the list in section 3.2  

Table 1 shows the number of errors per task (errors that 
occurred after the first paste operation), the types of errors 
included in the tasks (based on the types of errors presented 
in section 3.2), the lines of code (LOC) of the source ex-
ample files (HTML and JavaScript files together), the total 
number of lines that had to be copied to solve the tasks, and 
the maximum time participants were given to complete 
each of the tasks. We judged tasks to be finished success-
fully if the code could be executed without causing any 
errors in Firefox and if it performed as required by the 
specification. 

In task #1, participants had to choose and integrate the 
correct part of a larger function for setting a cookie, while 
they had to choose and integrate a different part of that 
function for getting a cookie in task #2. For task #3, partic-
ipants had to integrate an enhanced pop-up menu into the 
target file. In task #4, participants had to add a pushpin to a 
‘Bing’ map and integrate it into the target file. To complete 
task #5, participants had to integrate an enhanced combo 
box (the one that we described above as Jamie’s example) 
into their target file. Finally, in task #6, participants had to 
integrate an inner window into their target file. 

At the end of the study, participants filled out a ques-
tionnaire. The questions primarily used five-level Likert 
scales, but some were open answer. 

4.4 Results 

The analysis of the data shows that participants using 
“Euklas full” completed more tasks (Control: 7/24, “Euklas 
lite”: 13/24, “Euklas full”: 18/24.) and fixed about twice as 
many errors (average = 22.25) as the control group did 
(average = 11.75) when integrating the example code into 
the target system. 

For the analysis we combined the tasks shown in Table 
1 into an “easy” group (tasks 1-3) and a “difficult” group 
(tasks 4-6). There are several reasons for combining the 
tasks into the two groups. The median average success rate 
for all six tasks across all three conditions was 0.5. We 
defined “easy” tasks as those with an average success rate 
at or above the median, and “difficult” tasks as those below 
the median. Another reason was that the tasks had been 
designed with an increasing difficulty. We allotted more 
time for completing the more difficult tasks. Finally, with-
out combining the tasks we would have not been able to 
perform any statistical analysis, due to the highly differen-
tiated completion values. The same reasoning justifies the 
statistical tests on the number of errors fixed. 
“Easy” Tasks “Difficult” Tasks 
1: 0.75 4: 0.33 
2: 0.50 5: 0.17 
3: 1.00 6: 0.42 

Table 2. Average success rate per task (std. error: 0.13) 
We ran a logistic regression analysis of the tasks, which 

showed a statistically significant difference for the success 
rate with respect to the tasks’ difficulty, i.e. between the 
“easy” and “difficult” tasks: likelihood ratio χ²[1] = 14.79,  
p < 0.0001. We also analyzed how the success rate of par-
ticipants was affected by the tool used (Control, Euklas lite, 
Euklas full) and the task difficulty (easy tasks, difficult 
tasks). A nominal logistic regression analysis showed that 
the effect of the tool on the success rate was significant: 
likelihood ratio χ²[2] = 14.97, p = 0.0006. The effect of the 
task difficulty on the success rate was also significant: 
likelihood ratio χ²[1] = 19.34, p < 0.0001. The interaction 
was not significant. In other words, participants were more 
successful based on the tool used across all tasks. We per-
formed pairwise nominal logistic regression tests to deter-
mine which levels of tool use had a significant effect on the 
success rate: Control vs. “Euklas lite”: likelihood ratio  
χ²[1] = 3.21, p = 0.074; Control vs. “Euklas full”: likeli-
hood ratio χ²[1] = 14.90, p < 0.0001; “Euklas lite” vs. 
“Euklas full”: likelihood ratio χ²[1] = 4.44, p < 0.035. In 
summary, “Euklas full” was better than both Control and 
“Euklas lite”. “Euklas lite” was slightly better than Control. 

Looking at the number of corrected errors, i.e. the num-
ber of errors that were fixed by the participants, the data 
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also shows that “Euklas full” participants fixed almost 
twice as many errors as participants in the control group 
We ran an ANOVA to test for the effect of the tool used 
and the task difficulty on the number of corrected errors, 
and found that the number of corrected errors differed sig-
nificantly across the three tools, F[2,9] = 13.82, p < 0.002. 
We ran contrasts to compare the tools with each other. The 
Control group made fewer error corrections than the 
“Euklas lite” group (F[1,9] = 13.37, p = 0.005) and also 
corrected less errors than the “Euklas full” group (F[1,9] = 
26, p < 0.001). 

Unfortunately, we were not able to analyze differences 
for the timing data, i.e. how long participants took to com-
plete each of the tasks, since there were so many tasks that 
participants failed to complete in the maximum allotted 
time. The analysis of the final questionnaires provides more 
details on the differences between the two Euklas versions. 
Participants who used “Euklas full” agreed that it usually 
provided helpful quick fixes (average 4 out of 5). One 
“Euklas full” user nicely expressed why he liked it: “Intel-
ligent error messages and debugging makes it infinitely 
more useful, especially when it checks against the source of 
your copy.”  “Euklas lite” got lower ratings in terms of 
helpfulness (average 3.25 out of 5) of its quick fixes from 
the participants who used it, which was not surprising. One 
of the “Euklas lite” participants suggested the following 
improvement, which reflects exactly the improvements in 
“Euklas full”: “Provide [a] pop-up menu which can suggest 
to copy blocks of code to resolve errors.” The questionnaire 
also asked whether Euklas speeds up the integration of 
JavaScript code compared to other editors. Participants 
using “Euklas full” strongly agreed with this statement 
(4.75 out of 5) while participants using “Euklas lite” did 
not share this view (3.75 out of 5). 

5. Discussion 
The tasks that were combined in the “easy tasks” group 
contained a maximum of three errors and participants were 
allotted the same maximum time of seven minutes for each 
of the tasks. Even though the number of errors was low and 
the scripts were short, participants in the Euklas conditions 
were more likely to complete the three tasks and fixed more 
errors than participants in the control group. However, due 
to the rather low complexity of tasks in this group, we did 
not expect that “Euklas full” participants would have big 
advantages compared to “Euklas lite” participants, which 
was reflected by the very similar results in the two Euklas 
conditions. 

For the three tasks in the “difficult tasks” group, howev-
er, the situation is different. “Euklas full” users had a larger 
advantage than participants in the other two groups. The 
code they used was longer and more complex (1828 LOC 
instead of 346 LOC), contained more errors (18 instead of 

6) and the errors were more difficult to find (see Table 1). 
Therefore, we increased the maximum time that partici-
pants were allowed to work on each task. The task comple-
tion rates were higher for participants using “Euklas full” 
than participants using “Euklas lite” and participants in the 
control condition. Also, the results show that participants 
using “Euklas full” were able to fix more errors than partic-
ipants in any of the other two conditions. 

Overall, the results show that the “Euklas lite” version, 
which provided error detection features and standard quick 
fixes, already brought many improvements in comparison 
with Eclipse’s JavaScript editor, which did not offer such 
features. This is not surprising, since we know that high-
lighting errors helps users. “Euklas full”, which offered 
additional analyses and additional quick fixes, improved 
performance even more. “Euklas full” especially showed 
advantages when the pieces of copied code were longer 
and/or more complex (as in Tasks 4-6). Euklas’s approach 
of considering a broader context for the computation of 
potential quick fixes has implications for many other pro-
gramming languages, such as Java. 

Using Eclipse’s marker feature for highlighting and fix-
ing errors seems to be an appropriate UI choice as partici-
pants had a very positive attitude towards this approach and 
considered it to be easy to learn. The most important aspect 
about using this feature is that participants knew what to 
expect from the provided quick fixes. They knew that these 
were usually right in “Euklas full”, but that they could 
sometimes also be wrong and might not be helpful. Such a 
situation was simulated in task 5, where participants had to 
fix a syntax error. The task also included a missing function 
definition that was not detected by either of the two Euklas 
versions. Participants were generally able to distinguish 
between these cases where they got standard “quick fixes” 
from Eclipse and where they got more sophisticated quick 
fixes from Euklas, since they did some manual checks to 
see if a proposed quick fix was appropriate or not before 
they used it. 

There were a total of 24 errors that occurred after partic-
ipants pasted the code from the source files into the target 
files. “Euklas full” provided 20 helpful suggestions for 
fixing these errors, plus 33 generic suggestions (e.g. declare 
a function with an empty body). Eclipse generally added in 
two additional suggestions per error that were not helpful at 
all. Participants sometimes picked one of Euklas’s generic 
fixes (e.g., for one of the missing functions in task 5). They 
knew that this was not sufficient for making the code work 
and therefore looked at the example code to manually find 
the correct piece of code. In cases where Euklas did not 
show an error at all (e.g., for one of the missing functions 
in task 5), participants did not perform worse than the par-
ticipants in the control group, so there appears to be no 
disadvantage to using Euklas. However, the evaluation has 
some limitations. First, the evaluation only had the rather 
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small number of 4 participants in each condition. Second, 
participants used the tools for only one hour. Third, the 
tasks may not have been representative of realistic tasks. 
Although the pieces of code were real-world examples that 
were taken from the web, we had to reduce the complexity 
of dealing with these examples to limit the amount of time 
spent on completing each of the tasks. 

6. Conclusion and Future Work 
In this paper, we presented our new Eclipse plug-in, 
Euklas, which supports JavaScript programmers in some of 
the tasks when using copy-and-paste-strategies for reusing 
example code. This kind of reuse does not create clones in 
a codebase [14], but instead helps users to reuse working 
code from others to introduce new functionality to their 
codebases and understand how this functionality can be 
implemented. Euklas supports these strategies by analyzing 
the target code for errors and by suggesting fixes for these 
errors. An important innovation is augmenting the fixes 
through an analysis of the code from where the example 
was copied. Our evaluation shows that Euklas’s users were 
able to fix a much higher number of copy-and-paste related 
errors than participants who used Eclipse’s JavaScript edi-
tor, which does not provide any debugging support. 

Euklas’s main contribution is analyzing the file from 
where code was copied to provide more detailed error de-
scriptions and much better quick fixes for these errors. We 
think that applying Euklas’s ideas to editors used for other 
languages (e.g., Python, Java, and C++) could increase 
programmers’ performance in these situations in the same 
way it did in our case for JavaScript. 

In addition to reducing the limitations discussed above, 
future work could include implementing some additional 
features for Euklas. One idea for providing improved error 
detections would be to design a heuristic for analyzing the 
context of a variable to try to determine its runtime type. 
This would allow the implementation of better quick fixes, 
since the system could distinguish between variables with 
the same name, but of a different type.  

Euklas points to a future where programming support 
tools better help developers by taking into account all of the 
available contextual information, and the provenance of 
resources used. The success of Euklas shows that this ap-
proach is feasible and can be successful, and developers 
can make effective use of recommendations, even when 
they are heuristic. The incorporation of extended copy and 
paste support into different kinds of editors would be a first 
step into this future. 
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