

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
PLATEAU'14, October 21 2014, Portland, OR, USA
Copyright 2014 ACM 978-1-4503-2277-5/14/10…$15.00
http://dx.doi.org/10.1145/2688204.2688208

EUKLAS
Supporting Copy-and-Paste Strategies for

Integrating Example Code

Christian Dörner

Senacor Technologies AG
Erika-Mann-Str. 55

80636 München

christian.doerner@senacor.com

Andrew R. Faulring

HCI Institute
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA

faulring@cs.cmu.edu

Brad A. Myers

HCI Institute
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA

bam@cs.cmu.edu

Abstract
Researchers have paid increasing attention in recent years
to the fact that much development occurs though example
modification. Helping programmers with some of the pit-
falls and vagaries of working with example code is the goal
of our tool, called Euklas. It helps developers to integrate
JavaScript example code into their own projects by using
familiar IDE interaction techniques of the Eclipse IDE. The
Euklas plugin uses static, heuristic source code checks to
highlight potential errors and to recommend potential fixes,
when incomplete sections of code are copied from a work-
ing JavaScript example and pasted into the program being
edited. The most unique feature of the tool is the ability to
automatically import missing variable and function defini-
tions from an example file into a new project file. Our
preliminary user study of Euklas suggests that it supports
users in fixing errors more easily.

Categories and Subject Descriptors D.2.6 [Program-
ming Environments]: Programmer workbench.

General Terms Algorithms, Design, Human Factors

Keywords Code Reuse, Copy-and-Paste, JavaScript,
Eclipse, Natural Programming, Examples

1. Introduction
Leveraging examples is an established technique in design
[1], and has recently received increasing attention from

researchers focusing on programming tools [2-5]. With the
rise of search engines and web repositories of code along
with discussion threads, blogs, and code example websites,
people often create new systems by copying and pasting
code snippets from such sources [6]. Surveys and research
show that looking for examples is often people’s preferred
way to learn how to perform a task or to learn how to use
application programming interfaces (APIs) [7].

Most of the research on reusing examples has focused
on building improved search and data mining tools to help
with finding the examples (e.g., [1, 3, 5, 7, 8]). However,
there has not been much research on assisting users in reus-
ing and integrating the examples after they have been

Figure 1. Euklas supports peoples’ integration attempts as it
enhances Eclipse’s JavaScript editor by (#1) highlighting errors in
the source code, (#2) providing quick fixes including the use of
the context in the origin of any copied code, and (#3) including
explanations for copy-and-paste errors based on the code of the
example snippet that was used.

13

f
b
(
[
a
g

U
w
p
s
a
p
u
r

g
v
in
s
o
s
w
s
w
s
w
e

th
s
h
ty
u
c
ir
ti
n
a
ta
p
th
a
v
o
e
1
f
F
v

1
n

found, with the
been identified
(e.g., copying s
11-13]. Our a

attempts by pr
guidance to hel

This paper in
Users’ Keystro
which helps us
paste strategies
specific guidan
and-paste error
part of the requ
users with reu
resulting errors

JavaScript i
guages for web
variety of user
nteraction des

spite of this wi
often provide l
static code che
with other, non
son may be tha
weak, dynamic
static analyses
well as provide
errors resulting

The followi
he kind of cop

supported by E
has found a co
ypes of enhan

use one in her
code in more d
rrelevant piece
ions, variables

necessary to m
ample. This is
ask especially

provide any he
he integration

ance. First, Eu
variables, missi
of CSS and Jav
error markers
1). Second, Euk
fied errors to
Figure 1). For
variable and fu

Euklas is Germa

nounced oy-class.

e exception of
as a common

several lines, b
aim is to sup
roviding famili
lp them make t
ntroduces our

okes Lessened
sers to more su
s for reuse (se
nce for assistin
rs that are typic
uired code pat

using working
s.
is one of the
b programming
rs, from end-u
igners [6], to
idespread use,
less programm
ecking, limited
n-scripting lang
at analyzing Jav
c typing that m
at edit-time. W

e more sophist
g from copy-an
ing example p
py-and-paste re
Euklas. Jamie
ode snippet on
nced combo-bo

website. Jami
etail to separat
es. That is, sh
, and imports o

make her code w
s often a time
y since Jamie’
elp. In contrast
process as it p

uklas highligh
ing function de
vaScript files,

 and squiggly
klas also comp
help Jamie ea
example, it s

unction definit

an for Euclase, w

[4, 9, 10]. Cop
usage pattern
locks, or even

pport people’s
iar, easy-to-us
their copied co
tool, called EU
by Attaching
uccessfully em
ee Figure 1). E
ng users in fix
cally caused by
ttern [11]. The
code from ot

most popula
g [15] and is u
user developer
professional p
JavaScript de

ming support fo
d auto-completi
guages such as
vaScript is diff

makes it challen
We overcome t
ticated guidanc
d-paste.
resents a typic
euse of JavaSc
is a JavaScrip

n the web that
oxes from whi
ie has to explo
te relevant piec

he has to ident
of JavaScript a
work the same
-consuming an
’s JavaScript
t, Euklas can h

provides her w
hts errors, suc
efinitions, and
in her target co
y underlines (s

putes quick fixe
asily correct th
suggests copyi
tions from the

which is a gemsto

py-and-paste ha
for reusing cod
whole method
copy-and-pas

e, and effectiv
de work.

UKLAS (Eclip
from Samples)

mploy copy-and
Euklas provide

xing some copy
y copying only
e goal is helpin
thers and to f

ar scripting lan
used by a broa
rs [16] such a

programmers. I
velopment too

or users (e.g., n
ions), compare
s Java. One re
ficult since it ha
nging to perfor
this limitation a
ce for correctin

cal use case fo
cript code that
pt developer an

creates variou
ch she wants
ore the examp
ces of code fro
tify which fun
and CSS files a
e way as the ex
nd cumbersom
editor does n
help Jamie wi
ith editing guid

ch as undefine
missing impor
ode by insertin
see #1 in Figu
es for the ident
hem (see #2
ing the missin
source file an

one. Euklas is pr

as
de

ds)
ste
ve

se
)1,
d-
es
y-

y a
ng
fix

n-
ad
as
In

ols
no
ed
a-
as

rm
as
ng

for
is

nd
us
to

ple
m

nc-
are
x-

me
not
th
d-
ed
rts
ng
re
ti-
in
ng
nd

ro-

offers
and Ja

Euk
users t
project
pasted
the con
were c
feature
tion an
heurist
as che
tions, a
was co
errors.

We
people
results
usable
confus
ful. Th
were a
in the
their ta

2. R
The re
locatin
target
finding
the we
are too
system

JDA
users t
from J
write
pieces
UNIX
Script
not acc
Euklas
users t
their c

D.M
HTML
bles th
existin
it follo
represe
ments’
D.MIX
one st

to insert the m
avaScript files.
klas makes the
to integrate Ja
ts by identifyi

d code and rec
nsideration of

copied. The ed
es of the Eclip
nd repair algor
tic edit-time so

ecking for unin
and the analysi
opied) to provi
.
e evaluated Euk
e, comparing
s suggest that th
e and effective
sed that Euklas
he study also s
able to fix abo

control group
arget systems.

Related W
euse of exampl
ng the exampl
system. There
g relevant exa
eb) [2, 3, 17, 18
ols that suppo

ms.
A (JavaScript
that have no pr
JavaScript code
simple HTML
 of JavaScript
 systems. How
code as “blac

cess or change
s treats all Java
to access and c

code structure.
MIX targets w
L and scripting
hem to build
ng web sites. D
ows a copy-and
entation of the
’ parameters c
X’s editing env
tep further, si

missing import

e following ma
avaScript exam
ing some of th
commending p
f the original c
diting guidance
pse IDE and ex
rithms. These
ource code che

nitialized variab
is of the examp
ide useful quic

klas in a prelim
it to Eclipse’s
he features hav
e manner, sinc
s can sometim
suggests that p

out two times a
p, when integr

Work
le code consist
le code and 2

e are several sy
ample code (e.
8]. However, m
ort users in int

Dataflow Arch
rogramming sk
e that was foun
L commands
t code in a w
wever, JDA tr
k-boxes”, whi

e the internal co
aScript code as
copy even inco

web designers
g languages, su
and share ma

D.MIX inspired
d-paste approa
e selected data
can be change
vironment. We
ince Euklas p

t statements fo

ajor contributio
mple code into
he potential er
potential fixes
ode from whic

e uses familiar
xtends it with n
algorithms are

ecks for JavaS
bles and undef
ple file (from w
ck fixes for the

minary user stu
s JavaScript e
ve been implem
ce participants

mes be wrong o
participants us
as many errors
rating example

ts of two main
2) integrating
ystems that ass
.g., in reposito

more relevant t
tegrating code

hitecture) aims
kills to build ap
nd on the web
to connect th

way similar to
reats the piece
ch means that
ode structure. I
s “glass boxes”
omplete interna

s that are fam
uch as JavaScr
ashups created
d the design of
ach that works
a [19]. In that
ed after pastin
e take the idea
provides speci

or the CSS

on: It helps
o their own
rrors in the
, based on
ch sections
interaction
new detec-
e based on

Script, such
fined func-
where code
e identified

udy with 12
editor. The
mented in a
s were not
or not help-
ing Euklas
s as people
e code into

n phases: 1)
it into the
ist users in
ories or on
to our work
e into their

s to enable
pplications
[10]. Users
e different
“pipes” in

es of Java-
users can-

In contrast,
”, allowing
al pieces of

miliar with
ript. It ena-

from pre-
f Euklas as
on a richer
t way, ele-
ng them to

of D.MIX
fic editing

14

o
in

r
th
d
o
a
in
u
p
w

c
[
d
in
e
o
e
ta
s
d
c

c
g
m
d
I

m
l
s
O
g
a
a
f
S
in
a
q
c
k

R
u
r
p
f
in
e
th

operations, in t
ntegrate their c

The Looking
reuse functiona
hem to unders

dents to do this
of the program
and end of the
ntegrate this f

uses the idea o
paste-based reu
with familiar in

JIGSAW is
copy-and-paste
9]. It inspired

developers with
nto the develop

example code a
of the example
ever, Jigsaw c
arget code tha

structures. Jigs
developers, wh
cumbersome an

JSLINT is a
cript code. JSL
goal is to help
makes it differ
do not restrict
In addition, Euk

Many JavaS
ming support o
evel, IDEs like

such as checkin
One of the mo
gramming Java
advanced code
ample, it offer
functions have
Storm also offe
ng users to eas

a new empty
quick fixes do
copied, making
kind of quick fi

Euklas’s cop
Rosson’s and
uses in Smallt
reuse strategy
piece of code t
functionality th
nto the target

editing directio
he code work

the form of qu
copied pieces o
g Glass IDE h
ality they find
stand how the
s by enabling th

m they are inte
e functionality
functionality in
of guiding use
use strategies,
nteraction techn

a plug-in for
e interaction te
d the design of
h the integrati
per’s own sour
and the target
code would fi
an only work

at have similar
saw was tested
hich showed tha
nd not yet well
a popular tool
Lint works on
p programmer
rent from Eukl
which features
klas supports u

Script editors d
other than syn
e NetBeans pro
ng whether a v
ost advanced c
aScript is Web
e inspections b
rs analyses to
 been defined
ers quick fixes
sily declare and
function defin
not analyze th

g it impossibl
ixes that Eukla
py-and-paste d
Carroll’s obse
talk programm
where progra

that they consi
hat they intend

context, they
ons about what
k. This was o

uick-fixes, whi
of code into the
elps middle sc
in other progr
code works [4
hem to 1) reco

erested in, 2) i
they are inter
n their new p

ers to support
 but integrate
niques in Eclip
r the Eclipse I
chnique for re
f Euklas, sinc
ion of the reus
rce code. Jigsa
code to sugge

it best in the ta
k with pieces o
r AST (Abstra
d in a small
at the resolutio
 supported by
for detecting
a subset of Ja
rs to write be
las’s error dete
s of the langua
users in fixing t
do not provide
ntax highlighti
ovide simple c
variable has be
commercial pr
bStorm, which
by leveraging

check whethe
d. In contrast t

for the detecte
d define a varia
nition. Howeve
he files from w
e for WebSto

as provides.
design is stron
ervations abou
ming” [13]. Th
ammers copied
idered to be pr
ded to reuse.

y let the envir
t would be nec

often accompli

ch help users
eir projects.
chool students
rams by helpin
4]. It guides stu
rd the executio
dentify the sta

rested in, and 3
program. Eukla

their copy-and
es this guidanc
pse.
IDE that uses

eusing Java cod
e Jigsaw assis
sed source cod
aw compares th
est which piec
rget code. How
of example an

act Syntax Tre
study with tw

on of conflicts
Jigsaw.
errors in JavaS

avaScript and i
etter code. Th
ection, since w
age can be use
the errors.
much program
ng. At the ne
ode inspection
een used or no
roducts for pro
h provides mo
JSLint. For ex

er variables an
to JSLint, Web
ed errors, allow
able, or to crea
er, the provide
where code wa

orm to offer th

ngly inspired b
ut “the reuse o
hey observed
d and pasted
romising for th
After pasting
onment provid
cessary to mak
ished in sever

to

to
ng
u-
on
art
3)
as
d-
ce

a
de
sts
de
he
es
w-
nd
e)

wo
is

S-
its
his
we
ed.

m-
xt

ns,
ot.
o-
re
x-
nd
b-
w-
ate
ed
as
he

by
of
a
a

he
it

de
ke
ral

cycles
until a

Kim
enced
ly cop
tionali
eviden
often
spend

Euk
copyin
will no
for som
pasting
are pe
have b

3. E
In this
sign. A
plemen

3.1 U

Return
explain
code s

structo
code f
pastes
two er
calls f
These
not av
copied
iar ma
error m
in the

Figur
Jamie

of fixing and
all of the copied
m et al. report
fields/constant

pied together b
ity [12]. In ad
nce that the id
fails in the fir
time on identif

klas supports u
ng-and-pasting
ot only mark e
me of these err
g additional pi

erformed iterati
been fixed.

EUKLAS
s section we fi
Afterwards we
nted and integr

User Interface

ning to the exa
n how Euklas h
she found on t

or (jawBar(id
for making th
the constructo

rrors in the co
findMatch(e
are undefined

vailable in the t
d from the exa
arker system in
markers in t
code.

re 2. Euklas m
e pastes it into th

d waiting for n
d code was fixe
t that related c
ts and caller/ca

because they b
ddition, Ko et
dentification o
rst attempt, re
fying all releva
users when th

g it into their t
errors, but it a
rors (which mi
ieces of the exa
ively until all

first discuss Eu
e will present h
rated into the E

e

ample discusse
helps Jamie to
the web. Jamie

d), see Figure 2
he combo-box
or into her targ
onstructor: the
e) and init(
d because their
target file, sinc

ample file. Euk
ncluding the squ
the margin to

marks errors in
he target file.

new editing su
ed.
code snippets
allee methods)

belong to the s
t al. provided
of related cod
equiring progr
ant pieces of co
hey try to reus
target code sin
also provides q
ight involve co
ample code). T
errors in the t

uklas’s user in
how the system
Eclipse IDE.

ed in the introd
 integrate the c
e identifies tha

2) is a promisin
x work. She c
get file. Euklas
 two undefine
) (see #1 in
r function defi
ce they have no
klas uses Eclip
uiggle underlin
indicate these

the function ja

uggestions,

(e.g. refer-
) are usual-
same func-
d empirical
de snippets
rammers to
ode [11].
se code by
nce Euklas
quick fixes
opying and
These steps
target code

nterface de-
m was im-

duction, we
combo-box
at the con-

ng piece of
copies and
s identifies
ed function

Figure 2).
initions are
ot yet been

pse’s famil-
nes and the
two errors

awBar() after

15

s

e
f
f
3
f

f
th
f
th
f
b
w
b
b
f
w
a
to

F
e
o
l
t
T
ti
s
th
u

3

E
e
H

F
f
p
s
f
f
w

In addition
solutions for fi

 that refers to
error, as shown
functionality fo
fixes proposed
3) use Euklas’s
fixes proposed

The first qu
function jawBa
he example fi

function jawBa
hat Euklas pro

function, called
body. This is s
would not serv
bo-box work in
because it rese
fered by Eclip
which program
also a fallback
o provide a bet

Jamie reads
Figure 3) that
error by using
option is proba
ects it. Eukl
type.init()
This successful
ion init().

still undefined
he newly code

until the code is

3.2 Impleme

Euklas was im
editor as a plu
HTML editors

Figure 3. Eukla
fined function in
proposed fix is sh
shows a short p
followed by a pre
fix has been app
which is well-kn

to marking th
ixing them. By
o init(), Jam
n in Figure 3.
or showing the
by Euklas (the

s icon to di
by Eclipse itse
ick fix that Eu
ar.prototyp

file (the file fr
ar()) to the ta
oposes is a “d
d init() that
sufficient to re
e Jamie’s goal
n her website.
embles the kin
pse’s Java ed

mmers may be
option for cas
tter quick fix b

s the explanati
describes how
the example c

ably the correc
las pastes the

from the exa
lly fixes the m
However, the
and Euklas id

e. Jamie contin
s fixed and the

ntation

mplemented on
ug-in to the ID
do not provid

as proposes the t
nit(). More infor
hown in the beig
proposal explain
eview of how th
lied. Euklas aug
own by many pr

e errors, Eukla
y clicking on t

mie gets four op
Again, Eukla

e quick fix opt
e first two in t
stinguish them
elf (the last two
uklas proposes
pe.init() th
from which Ja
arget file. The s
default fix” tha
would have an
emove the syn
of making the
We added thi

nds of quick fi
itor and by W
familiar. The d
es in which Eu

based on the ex
ion in the beig
w Euklas prop
code. She decid
ct fix for her s
e function j

ample file into
missing definiti

function fin
dentified an ad
ues to fix the r

e combo-box is

n top of Eclip
DE. Eclipse’s

de as much pro

top two quick fi
rmation about th
ge pop-up at the
ning what Eukl
he code will look
gments Eclipse’s
rogrammers.

as also sugges
the error mark
ptions to fix th
s uses Eclipse
tions. The quic
the list in Figu

m from the quic
o in the list).
would copy th
at is defined

aime copied th
second quick f
at creates a ne
n empty functio
ntax error, but
e enhanced com
is default optio
ixes that are o
WebStorm wi
default option
uklas is not ab

xample code.
ge window (se
poses to fix th
des that the fir
situation and s
awBar.proto

o the target fil
ion of the fun
ndMatch(e)
dditional error
remaining erro
s working.

pse’s JavaScri
JavaScript an

ogramming sup

fixes for the und
he first (selecte
right. The pop-u
as intends to d

k after the selecte
s quick fix featu

sts
ker
his
e’s
ck
re
ck

he
in
he
fix
ew
on
it

m-
on
of-
th
is

ble

ee
he
rst
e-
o-
le.

nc-
is
in

ors

pt
nd
p-

port. I
syntax
in file”

Jav
to relia
variou
non-fu
an und
‘null’
for ad
operati
that ar
tionshi
in the
can be
in a fu
variabl
missin
definit
which
HTML
functio

Euk
Syntax
code.
pastes
file. E
types
provid
be the
runtim
errors
cause
do not

Euk
used in
[21]. S
variabl
Euklas
en to
[22]. T
of the
correct
ers a u
type).
errors
undefi
detecti
numbe
errors

The
are mo
numbe
dynam

de-
ed)
up

do,
ed

ure

In particular, th
x errors and so
” and “assign s

vaScript is a dy
ably detect err

us situations tha
unction value (
defined variab
or ‘undefined’

dditional errors
tions. We iden
re specific to Ja
ip with HTML
following list

e detected by E
unction’s param
le definitions,

ng CSS style
tions), 5) missi
might be loca

L elements be
on getElemen
klas employs h
x Tree (AST)
Euklas’s analy
a piece of co

Euklas provide
mentioned ab

des quick fixes
more importan

me errors in the
in the HTML
problems with

t necessarily le
klas’s code ana
n other static
Since JavaScr
les, it is impos
s instead emplo
be a successf

The implement
e used examp
t, which mean

useful result (a
Euklas uses th
listed above. T

ined variables
ion algorithm
er 3), and the t
in the HTML c

e heuristics use
ore fragile than
ered 1-3. The

mically, e.g. loa

hey only provi
ome basic quic
statement to ne
ynamic langua
rors at edit tim
at can cause ru
(e.g. undefined
ble, and acces
’ [20]. Starting
s that may ari
ntified three ad
avaScript, and
L and CSS cod
of potential co

Euklas: 1) miss
meter list, 2) m
, 3) missing
sheet imports
ing JavaScript
ated on remote
ing accessed b
ntById(HTML_
heuristic, static

to find poten
ysis of the A

ode from an ex
es error highli
bove. However

for numbers 1
nt types of erro
e JavaScript c

L part of the s
h displaying th
ad to JavaScrip
alyses are diff
code analysis

ript does not
ssible to run c
oys heuristic a
ful alternative
tation of Eukla

ples is syntact
ns that the code
a limitation of t
hree different a
The first detect

(error numbe
checks for un

third detection
code (error num
ed for identify

n the heuristics
reason is tha

ading CSS cod

ide error highl
k fixes, such a

ew local variab
age, which ma
me. Jensen et a
untime errors:
d) as a functio
ssing a prope

g with this list,
ise from copy
dditional types

d arise from its
de. Our analys
opy and paste
ing parameter
missing local
function defin
(e.g. for gene
file imports (e

e servers), and
by the global
_Element_ID
 analyses on th

ntial errors in
ST is invoked
xample file to
ighting for all
r, Euklas curr
1-3, which we c
ors, since they
code. Numbers
source code, w
he webpage co
pt execution-tim
ferent from tho

tools, such as
provide static

certain dataflow
analyses, which

approach for
as assumes tha
tically and se
e is executable
the current Eu
algorithms to i
tion algorithm

ers 1 and 2), t
ndefined funct
algorithm che

mbers 4-6).
ying errors num
s used for detec
at content can
de within JavaS

lighting for
as “rename

ble.”
kes it hard
al. identify
invoking a

on, reading
erty that is

we looked
y and paste
s of errors
close rela-

sis resulted
errors that
definitions
and global
nitions, 4)
eral layout
e.g. scripts,
6) missing
JavaScript

D).
he Abstract
JavaScript

d if a user
o the target
l six error
rently only
consider to
may cause

s 4-6 cause
which may
orrectly but
me errors.

ose that are
s FindBugs

typing of
w analyses.
h has prov-
JavaScript

at the code
emantically
 and deliv-

uklas proto-
identify the
checks for

the second
tions (error
ecks for the

mbered 4-6
cting errors

be loaded
Script code.

16

T
r
m

p
m
e
C
e
c
t
to
c
t
f
to

a
th
s
c
r
r
E
m
e
th
s

e
s
ti
u
s
u
s

s
e
E
v
f
s
q
f
m
f
c

4
T
C
tu

To visualize ou
ristics, error nu
marker inste

There are s
positives or fal
means that the
error, or miss
Consider the f
errors in the ev
caused by “h
that.findMat
o detect that

could be relate
that. It would
find the functio
o the object th

Euklas not o
also can propo
he links betwe

specific region
code. Each targ
region has exa
region in an ex
Euklas maintai
memory. It up
edited to keep t
his metadata a

shuts down.
Currently, E

example files, i
space. We deci
ion for the Euk

usability and u
should handle e
ual snippets of
small pieces of

The ASTs o
solutions for s
error in the ta
Euklas analyze
variable (under
file(s) is syntac
suitable definit
quick fix propo
file into the tar
marker in the ta
fix, Euklas par
copied AST pie

4. Evalua
The evaluation
Can users und
ures? Is the in

ur confidence
umbers 4, 5, an
ad of an error m
ome cases in
se negatives, d
analyses can e
marking some

following exam
valuation. Eukla
hiding” variab
tch(e);. In t

the function
d to the object

d produce a fal
on definition of
hat .
only finds pote
se fixes for th
een the positio
in the target f

get file can ha
actly one link
xample file from
ins the meta-da
pdates the regi
the metadata c

as part of the p

Euklas needs t
i.e., they must
ided that this w
klas prototype,
usefulness of
example code
f code (e.g., c
f code in blog p
f the example

some classes o
arget file refe
es the example
r the assumptio
ctically and sem
tion in an ex

osal to copy tha
rget file, and a
arget file. If the
rses the AST o
ece from the ex

ation
n had the goal
derstand and s
ntegration of e

level of the m
d 6 are marked
marker .
which Euklas

due to the used
either mark co
e existing erro
mple that cau
as cannot detec

bles: var th
this case Eukla

call that.f
t this instead
se positive bec
f findMatch(

ential errors in
hese errors. Eu
on in the exam
file when users
ave multiple re
to exactly one
m which the c
ata about these
ions when the
correct. Euklas
project when E

to have access
be present in

would be a re
, to enable inv
its ideas, but
from external

code copied fr
posts).
files are analyz

of errors. For
ers to an und
 file(s) for a d

on that the code
mantically corr
xample file, E
at definition fr

adds this quick
e user selects a
of the target f
xample file.

l of answering
uccessfully us

example code

more fragile heu
d with a warnin

s produces fal
d heuristics. Th
orrect code as a
ors in the cod
used one of th
ct errors that a
hat = this
as is not be ab
indMatch(e)
 of to the obje
cause it does n
(e) that belong

n the code, but
uklas remembe
mple file and th
s copy and pas
egions and eac
e correspondin
ode was copie
e connections

target files a
loads and sav
clipse starts an

s to each of th
Eclipse’s work
asonable limit
estigation of th
t a real syste
files or individ
om the web, o

zed for potenti
example, if th
efined variabl

definition of th
e in the examp
ect). If there is

Euklas creates
rom the examp
k fix to the erro
a proposed quic
file to insert th

g two question
se Euklas’s fe
faster and mo

u-
ng

se
his
an

de.
he

are
s;
ble
;

ect
not
gs

it
ers
he
ste
ch
ng
ed.
in

are
es
nd

he
k-
ta-
he
m
d-
or

ial
he
le,
his
ple
s a

a
ple
or
ck
he

ns:
a-
re

correct
editor
tor, wh

4.1 P

We fe
have s
not wa
Theref
year o
langua
project
We re
local u
sated $
to 37
verse
softwa

4.2 A

The st
ground
stallati
The co
does n
experim
“Eukla
tween
the tar
while
chose
able to
wanted
ing and
Java e
having
took th

We
used fo
in Fire
test wh

4.3 P

The st
version
Eclips
lite” an
er the
subjec
imposs
would
run. P
since a

t with Euklas t
or compared t

hich already of

Participants

eel that Euklas
some experien
ant to have to
fore, we recru
of experience
age), and who
t in JavaScript
cruited 12 par
university com
$15 for particip
years (median
backgrounds,

are engineering

Apparatus and

tudy was con
ds. We used a
ion including t
ontrol group u
not highlight e
mental group
as lite” and “E
the two versio

rget file to iden
“Euklas full”
to have these

o separately stu
d to explore th
d quick fixes w

editor. Second
g the more sop
he example file
e set up Eclips
for the study. E
efox to allow p
hether their tar

Procedure

tudy used a b
n as indepen
e’s JavaScript
nd “Euklas ful
 tasks were c

cts design was
sible for the pa

d have known
Participants we
all subjects rep

than with Eclip
to a more soph
ffers some erro

s is most app
nce with using
o train people
uited participa
using Eclipse

o had done at
t (using any dev
rticipants (10 m

mmunity. Each
pating. Their a
n: 25, s.d. 5).

such as busi
g.

d Materials

nducted in ou
an iMac runnin
the WTP (Web

used Eclipse’s
errors or provid

used one of
Euklas full”. T

ons was that “E
ntify errors and
also analyzed
two different

udy the followi
he effects of p
with a user inte
, we were int

phisticated anal
e(s) into accou
se’s workspace
Each of the exa
participants to e
rget code was w

between-subjec
ndent variable
t editor (Con
ll”. The depend
completed suc
s chosen beca
articipants to r
the answer to

ere randomly
ported approx

pse’s standard
histicated Java
or detection fea

propriate for p
g JavaScript, a

on how to us
ants who had
 (for developi
least one pro

velopment env
male, 2 female
participant wa
ges ranged fro
The participan

iness administ

ur lab on the
ng a standard E
b Tools Projec
JavaScript edi
de quick fixes
two versions
The main diff

Euklas lite” onl
d to compute q

the example
versions of Eu
ing two aspect

providing error
erface similar to
terested in the
lyses and quick

unt.
e with the files
amples could b
explore the exa
working. .

cts design usin
with three c

ntrol condition
dent variable w

ccessfully. The
ause it would
redo the tasks,
 each task aft
assigned to ea
imately equal

JavaScript
aScript edi-
atures?

eople who
and we did
se Eclipse.
about one

ing in any
ogramming
vironment).
e) from our
as compen-
m 19 years
nts had di-
tration and

university
Eclipse in-
ct) plug-in.
itor, which
s, and each
of Euklas:

ference be-
ly analyzed
quick fixes,
file(s). We
uklas to be
s. First, we
r highlight-
o Eclipse’s
 effects of
k fixes that

s that were
be executed
amples and

ng the tool
conditions:

n), “Euklas
was wheth-
e between-
have been
since they

er the first
ach group,
JavaScript

17

programming experience. Participants in all groups re-
ceived a spoken introduction to the study and signed the
consent form. All participants were briefly introduced to
Eclipse’s JavaScript editor. Members of the experimental
groups received an additional introduction to Euklas’s
extensions to Eclipse’s JavaScript editor, e.g. information
about its error and warning markers and the quick fixes. All
task descriptions explained which code should be copied
and what the desired results would be after the code was
pasted and all errors were fixed.

All participants performed the tasks in the same order.
The tasks were designed to cover all cases in which Euklas
provides support, as well as cases where it provides mis-
leading help or does not help at all. Participants were al-
lowed to work on each task for a fixed amount of time,
which varied from 7 to 20 minutes, based on the task’s
difficulty. The researcher who conducted the study meas-
ured the time it took participants to work on each of the
tasks and stopped them if they ran over the maximum time
allowed for each task.
Task No. of

Errors
Types of
Errors*

Source
LOC

Copied
LOC

Max. Time
(min.)

1 1 2 112 10 7
2 3 2, 3 112 13 7
3 2 1, 2 122 29 7
4 3 2, 5, 6 103 5 10
5 5 3, syntax

error
218 125 12

6 10 2, 3, 4 1507 996 20
Sum 24 2174 1178 63

Table 1. Summary of the tasks (*types of errors ac-
cording to the list in section 3.2

Table 1 shows the number of errors per task (errors that
occurred after the first paste operation), the types of errors
included in the tasks (based on the types of errors presented
in section 3.2), the lines of code (LOC) of the source ex-
ample files (HTML and JavaScript files together), the total
number of lines that had to be copied to solve the tasks, and
the maximum time participants were given to complete
each of the tasks. We judged tasks to be finished success-
fully if the code could be executed without causing any
errors in Firefox and if it performed as required by the
specification.

In task #1, participants had to choose and integrate the
correct part of a larger function for setting a cookie, while
they had to choose and integrate a different part of that
function for getting a cookie in task #2. For task #3, partic-
ipants had to integrate an enhanced pop-up menu into the
target file. In task #4, participants had to add a pushpin to a
‘Bing’ map and integrate it into the target file. To complete
task #5, participants had to integrate an enhanced combo
box (the one that we described above as Jamie’s example)
into their target file. Finally, in task #6, participants had to
integrate an inner window into their target file.

At the end of the study, participants filled out a ques-
tionnaire. The questions primarily used five-level Likert
scales, but some were open answer.

4.4 Results

The analysis of the data shows that participants using
“Euklas full” completed more tasks (Control: 7/24, “Euklas
lite”: 13/24, “Euklas full”: 18/24.) and fixed about twice as
many errors (average = 22.25) as the control group did
(average = 11.75) when integrating the example code into
the target system.

For the analysis we combined the tasks shown in Table
1 into an “easy” group (tasks 1-3) and a “difficult” group
(tasks 4-6). There are several reasons for combining the
tasks into the two groups. The median average success rate
for all six tasks across all three conditions was 0.5. We
defined “easy” tasks as those with an average success rate
at or above the median, and “difficult” tasks as those below
the median. Another reason was that the tasks had been
designed with an increasing difficulty. We allotted more
time for completing the more difficult tasks. Finally, with-
out combining the tasks we would have not been able to
perform any statistical analysis, due to the highly differen-
tiated completion values. The same reasoning justifies the
statistical tests on the number of errors fixed.
“Easy” Tasks “Difficult” Tasks
1: 0.75 4: 0.33
2: 0.50 5: 0.17
3: 1.00 6: 0.42

Table 2. Average success rate per task (std. error: 0.13)
We ran a logistic regression analysis of the tasks, which

showed a statistically significant difference for the success
rate with respect to the tasks’ difficulty, i.e. between the
“easy” and “difficult” tasks: likelihood ratio χ²[1] = 14.79,
p < 0.0001. We also analyzed how the success rate of par-
ticipants was affected by the tool used (Control, Euklas lite,
Euklas full) and the task difficulty (easy tasks, difficult
tasks). A nominal logistic regression analysis showed that
the effect of the tool on the success rate was significant:
likelihood ratio χ²[2] = 14.97, p = 0.0006. The effect of the
task difficulty on the success rate was also significant:
likelihood ratio χ²[1] = 19.34, p < 0.0001. The interaction
was not significant. In other words, participants were more
successful based on the tool used across all tasks. We per-
formed pairwise nominal logistic regression tests to deter-
mine which levels of tool use had a significant effect on the
success rate: Control vs. “Euklas lite”: likelihood ratio
χ²[1] = 3.21, p = 0.074; Control vs. “Euklas full”: likeli-
hood ratio χ²[1] = 14.90, p < 0.0001; “Euklas lite” vs.
“Euklas full”: likelihood ratio χ²[1] = 4.44, p < 0.035. In
summary, “Euklas full” was better than both Control and
“Euklas lite”. “Euklas lite” was slightly better than Control.

Looking at the number of corrected errors, i.e. the num-
ber of errors that were fixed by the participants, the data

18

also shows that “Euklas full” participants fixed almost
twice as many errors as participants in the control group
We ran an ANOVA to test for the effect of the tool used
and the task difficulty on the number of corrected errors,
and found that the number of corrected errors differed sig-
nificantly across the three tools, F[2,9] = 13.82, p < 0.002.
We ran contrasts to compare the tools with each other. The
Control group made fewer error corrections than the
“Euklas lite” group (F[1,9] = 13.37, p = 0.005) and also
corrected less errors than the “Euklas full” group (F[1,9] =
26, p < 0.001).

Unfortunately, we were not able to analyze differences
for the timing data, i.e. how long participants took to com-
plete each of the tasks, since there were so many tasks that
participants failed to complete in the maximum allotted
time. The analysis of the final questionnaires provides more
details on the differences between the two Euklas versions.
Participants who used “Euklas full” agreed that it usually
provided helpful quick fixes (average 4 out of 5). One
“Euklas full” user nicely expressed why he liked it: “Intel-
ligent error messages and debugging makes it infinitely
more useful, especially when it checks against the source of
your copy.” “Euklas lite” got lower ratings in terms of
helpfulness (average 3.25 out of 5) of its quick fixes from
the participants who used it, which was not surprising. One
of the “Euklas lite” participants suggested the following
improvement, which reflects exactly the improvements in
“Euklas full”: “Provide [a] pop-up menu which can suggest
to copy blocks of code to resolve errors.” The questionnaire
also asked whether Euklas speeds up the integration of
JavaScript code compared to other editors. Participants
using “Euklas full” strongly agreed with this statement
(4.75 out of 5) while participants using “Euklas lite” did
not share this view (3.75 out of 5).

5. Discussion
The tasks that were combined in the “easy tasks” group
contained a maximum of three errors and participants were
allotted the same maximum time of seven minutes for each
of the tasks. Even though the number of errors was low and
the scripts were short, participants in the Euklas conditions
were more likely to complete the three tasks and fixed more
errors than participants in the control group. However, due
to the rather low complexity of tasks in this group, we did
not expect that “Euklas full” participants would have big
advantages compared to “Euklas lite” participants, which
was reflected by the very similar results in the two Euklas
conditions.

For the three tasks in the “difficult tasks” group, howev-
er, the situation is different. “Euklas full” users had a larger
advantage than participants in the other two groups. The
code they used was longer and more complex (1828 LOC
instead of 346 LOC), contained more errors (18 instead of

6) and the errors were more difficult to find (see Table 1).
Therefore, we increased the maximum time that partici-
pants were allowed to work on each task. The task comple-
tion rates were higher for participants using “Euklas full”
than participants using “Euklas lite” and participants in the
control condition. Also, the results show that participants
using “Euklas full” were able to fix more errors than partic-
ipants in any of the other two conditions.

Overall, the results show that the “Euklas lite” version,
which provided error detection features and standard quick
fixes, already brought many improvements in comparison
with Eclipse’s JavaScript editor, which did not offer such
features. This is not surprising, since we know that high-
lighting errors helps users. “Euklas full”, which offered
additional analyses and additional quick fixes, improved
performance even more. “Euklas full” especially showed
advantages when the pieces of copied code were longer
and/or more complex (as in Tasks 4-6). Euklas’s approach
of considering a broader context for the computation of
potential quick fixes has implications for many other pro-
gramming languages, such as Java.

Using Eclipse’s marker feature for highlighting and fix-
ing errors seems to be an appropriate UI choice as partici-
pants had a very positive attitude towards this approach and
considered it to be easy to learn. The most important aspect
about using this feature is that participants knew what to
expect from the provided quick fixes. They knew that these
were usually right in “Euklas full”, but that they could
sometimes also be wrong and might not be helpful. Such a
situation was simulated in task 5, where participants had to
fix a syntax error. The task also included a missing function
definition that was not detected by either of the two Euklas
versions. Participants were generally able to distinguish
between these cases where they got standard “quick fixes”
from Eclipse and where they got more sophisticated quick
fixes from Euklas, since they did some manual checks to
see if a proposed quick fix was appropriate or not before
they used it.

There were a total of 24 errors that occurred after partic-
ipants pasted the code from the source files into the target
files. “Euklas full” provided 20 helpful suggestions for
fixing these errors, plus 33 generic suggestions (e.g. declare
a function with an empty body). Eclipse generally added in
two additional suggestions per error that were not helpful at
all. Participants sometimes picked one of Euklas’s generic
fixes (e.g., for one of the missing functions in task 5). They
knew that this was not sufficient for making the code work
and therefore looked at the example code to manually find
the correct piece of code. In cases where Euklas did not
show an error at all (e.g., for one of the missing functions
in task 5), participants did not perform worse than the par-
ticipants in the control group, so there appears to be no
disadvantage to using Euklas. However, the evaluation has
some limitations. First, the evaluation only had the rather

19

small number of 4 participants in each condition. Second,
participants used the tools for only one hour. Third, the
tasks may not have been representative of realistic tasks.
Although the pieces of code were real-world examples that
were taken from the web, we had to reduce the complexity
of dealing with these examples to limit the amount of time
spent on completing each of the tasks.

6. Conclusion and Future Work
In this paper, we presented our new Eclipse plug-in,
Euklas, which supports JavaScript programmers in some of
the tasks when using copy-and-paste-strategies for reusing
example code. This kind of reuse does not create clones in
a codebase [14], but instead helps users to reuse working
code from others to introduce new functionality to their
codebases and understand how this functionality can be
implemented. Euklas supports these strategies by analyzing
the target code for errors and by suggesting fixes for these
errors. An important innovation is augmenting the fixes
through an analysis of the code from where the example
was copied. Our evaluation shows that Euklas’s users were
able to fix a much higher number of copy-and-paste related
errors than participants who used Eclipse’s JavaScript edi-
tor, which does not provide any debugging support.

Euklas’s main contribution is analyzing the file from
where code was copied to provide more detailed error de-
scriptions and much better quick fixes for these errors. We
think that applying Euklas’s ideas to editors used for other
languages (e.g., Python, Java, and C++) could increase
programmers’ performance in these situations in the same
way it did in our case for JavaScript.

In addition to reducing the limitations discussed above,
future work could include implementing some additional
features for Euklas. One idea for providing improved error
detections would be to design a heuristic for analyzing the
context of a variable to try to determine its runtime type.
This would allow the implementation of better quick fixes,
since the system could distinguish between variables with
the same name, but of a different type.

Euklas points to a future where programming support
tools better help developers by taking into account all of the
available contextual information, and the provenance of
resources used. The success of Euklas shows that this ap-
proach is feasible and can be successful, and developers
can make effective use of recommendations, even when
they are heuristic. The incorporation of extended copy and
paste support into different kinds of editors would be a first
step into this future.

Acknowledgements
This work was conducted in 2010/2011, when the first
author was a postdoc at Carnegie Mellon University. The

authors would like to thank Sara Kiesler for her invaluable
assistance in the data analysis. The first author thanks the
Alexander von Humboldt-Foundation for his Feodor Lynen
Research Fellowship for Postdoctoral Researchers. This
research has also been supported by SAP, Adobe and the
National Science Foundation, under grant CCF-0811610.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect those of the sponsors.

References
[1] Lee, B. et al., Designing with interactive example galleries. in

CHI '10, 2257-2266.
[2] Bajracharya, S. et al., C., Sourcerer: An internet-scale software

repository. in ICSE SUITE Workshop '09, IEEE, 1-4.
[3] Brandt, J. et al., S.R., Example-centric programming: integrating web

search into the development environment. in CHI '10, 513-522.
[4] Gross, P.A. et al., A code reuse interface for non-programmer middle

school students. in IUI '10, 219-228.
[5] Hartmann, B. et al., What would other programmers do: suggesting

solutions to error messages. in CHI '10, 1019-1028.
[6] Myers, B. et al., How Designers Design and Program Interactive

Behaviors. in VL/HCC'08, 177-184.
[7] Brandt, J. et al., Two studies of opportunistic programming. in CHI

'09, 1589-1598.
[8] Stylos, J. and Myers, B.A., Mica: A Programming Web-Search Aid.

in VL/HCC '06, 195-202.
[9] Cottrell, R. et al., Semi-automating small-scale source code reuse via

structural correspondence. in FSE-16, 214-225.
[10] Lim, S.C.S. and Lucas, P., JDA: a step towards large-scale reuse on

the web. in OOPSLA '06, 586-601.
[11] Ko, A. J. et al., Eliciting Design Requirements for Maintenance-

Oriented IDEs. In ICSE '05, 126-135.
[12] Kim, M. et al., An Ethnographic Study of Copy and Paste Program-

ming Practices in OOPL. in ISESE ‘04, 83-92.
[13] Rosson, M.B. and Carroll, J.M. The reuse of uses in Smalltalk pro-

gramming. ACM TOCHI, 3 (3). 219-253.
[14] Rahman, F., Bird, C. and Devanbu, P., Clones: What is that smell?.

In MSR ’10, 72-81.
[15] Crockford, D., JavaScript: The Good Parts, Sebastopol, CA: O'Reilly

& Associates, 2008.
[16] Lieberman, H., Paternò, F. and Wulf, V. End User Development.

Springer, Dordrecht, 2006.
[17] Sahavechaphan, N. and Claypool, K., XSnippet: Mining For sample

code. in OOPSLA '06, 413-430.
[18] Holmes, R., Walker, R.J. and Murphy, G.C. Approximate Structural

Context Matching: An Approach to Recommend Relevant Examples.
IEEE TSE, 32 (12). 952-970.

[19] Hartmann, B. et al., Programming by a sample: rapidly creating web
applications with d.mix. in UIST '07, 241-250.

[20] Jensen, S.H., Møller, A. and Thiemann, P., Type Analysis for JavaS-
cript. in 16th International Symposium SAS, Springer, 238-255.

[21] Ayewah, N. et al., Using Static Analysis to Find Bugs. IEEE Soft-
ware, 25 (5). 22-29.

[22] Ko, A. and Wobbrock, J., Cleanroom: Edit-Time Error Detection
with the Uniqueness Heuristic. in VL/HCC '10, 7-14.

20

