10-709: Read The Web

Tom Mitchell

January 2006

Learn to Read / Read to Learn

Thesis: We can achieve a breakthrough in NLP by building a continuously learning, continuously reading system, targeted toward understanding and extracting 80% of the factual content on the internet

Why now?

- 1. Recent progress in NLP
- 2. Recent progress in statistical machine learning
 - Especially bootstrapping methods that leverage redundancy
- 3. The web provides huge corpus of highly *redundant* text

The Idea

- Build on existing components
 - Named entity extractors, question answerers, parsers, coreference resolvers, ...
 - Self-supervised learning algorithms
 - Knowledge representations, ontologies, KBs, ...
- Create agent that formulates and pursues an infinite stream of learning/reading/fact acquisition subgoals
- Learn to read / Read to learn
- Primarily unsupervised (self-supervised)

Design goals for ReadTheWeb system

- Nonstop 24x7 operation, pursuing two goals:
 - Learning to read
 - Reading the web
- Begin with state-of-the-art methods (NLP, learning, representation)
- Architecture for improving continuously
 - A growing knowledge base (with pointers back to text sources)
 - A growing ability to understand complex text (and non-text)
- <1 day barrier to entry for researchers

Design of the course

- Become experts in state of the art of semi-supervised learning for NLP
- Design, implement, experiment with, and write up a first ReadTheWeb system

- First 4 weeks: each team implements working semisupervised learner, for some aspect of NLP
- Next 8 weeks: we design and implement integrated system
- All 13 weeks: cover state-of-art research papers

What we'll build on

- State of the art semi-supervised learning and NLP algorithms
- Existing software
 - Knowledge repository (SCONE)
 - Text learning package (Minor Third)
 - Text annotation framework (UIMA)
 - Web crawl / web query engine
- Your expertise, creativity and hard work

Course Logistics/Details

- This is a research project disguised as a course
- This will be hard work, and fun
- Some guest lectures (e.g., Oren Etzioni, Feb 9)
- No exams
- Grading based on projects and course participation
- Course web site will appear by tomorrow, off http://www.cs.cmu.edu/~tom

Professor Faloutsos

my advisor

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

Professor Faloutsos

my advisor

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

CoTraining Algorithm #1 [Blum&Mitchell, 1998]

Given: labeled data L, unlabeled data U Loop: Train g1 (hyperlink classifier) using L Train g2 (page classifier) using L Allow g1 to label p positive, n negative examps from U Allow g2 to label p positive, n negative examps from U Add these self-labeled examples to L

CoTraining: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: cotraining 5.0%

Typical run:

CoTraining setting:

- wish to learn f: $X \rightarrow Y$, given L and U drawn from P(X,Y)
- features describing X can be partitioned (X = X1 x X2)
 such that f can be computed from either X1 or X2

$$(\exists g_1, g_2)(\forall x \in X) \quad g_1(x_1) = f(x) = g_2(x_2)$$

One result [Blum&Mitchell 1998]:

- If
 - X1 and X2 are conditionally independent given Y
 - f is PAC learnable from noisy labeled data
- Then
 - f is PAC learnable from weak initial classifier plus unlabeled data

Expected Rote CoTraining error given *m* labeled examples, rote learning, perfectly redundantly sufficient

learn
$$f: X \rightarrow Y$$

where
$$X = X_1 \times X_2$$

where x drawn from unknown distribution

and
$$\exists g_1, g_2 \ (\forall x)g_1(x_1) = g_2(x_2) = f(x)$$

$$E[error] = \sum_{j} P(x \in g_j) (1 - P(x \in g_j))^m$$

Where g_j is the *j*th connected component of graph of L+U, m is number of labeled examples

How many unlabeled examples suffice?

Want to assure that connected components in the underlying distribution, G_D , are connected components in the observed sample, G_S

 $O(log(N)/\alpha)$ examples assure that with high probability, G_S has same connected components as G_D [Karger, 94]

N is size of G_D , α is min cut over all connected components of G_D

Co Training

- What's the best-case graph? (most benefit from unlabeled data)
- What the worst case?
- What does conditional-independence imply about graph?

PAC Generalization Bounds on CoTraining

[Dasgupta et al., NIPS 2001]

This theorem assumes X1 and X2 are conditionally independent given Y

Theorem 1 With probability at least $1 - \delta$ over the choice of the sample S, we have that for all h_1 and h_2 , if $\gamma_i(h_1, h_2, \delta) > 0$ for $1 \le i \le k$ then (a) f is a permutation and (b) for all $1 \le i \le k$,

$$P(h_1 \neq i \mid f(y) = i, h_1 \neq \bot) \leq \frac{\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \bot) + \epsilon_i(h_1, h_2, \delta)}{\gamma_i(h_1, h_2, \delta)}.$$

The theorem states, in essence, that if the sample size is large, and h_1 and h_2 largely agree on the unlabeled data, then $\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \bot)$ is a good estimate of the error rate $P(h_1 \neq i \mid f(y) = i, h_1 \neq \bot)$.

What if CoTraining Assumption Not Perfectly Satisfied?

- Idea: Want classifiers that produce a *maximally* consistent labeling of the data
- If learning is an optimization problem, what function should we optimize?

What Objective Function?

$$E = E1 + E2 + c_3E3 + c_4E4$$

$$E1 = \sum_{\langle x,y \rangle \in L} (y - \hat{g}_1(x_1))^2$$

$$E2 = \sum_{\langle x,y \rangle \in L} (y - \hat{g}_2(x_2))^2$$

$$E3 = \sum_{x \in U} (\hat{g}_1(x_1) - \hat{g}_2(x_2))^2$$

$$E4 = \left(\left(\frac{1}{|L|} \sum_{\langle x,y \rangle \in L} y \right) - \left(\frac{1}{|L| + |U|} \sum_{x \in L \cup U} \frac{\hat{g}_1(x_1) + \hat{g}_2(x_2)}{2} \right) \right)^2$$

What Function Approximators?

$$\hat{g}_1(x) = \frac{1}{1 + e^{\sum_{j=1}^{\sum w_{j,1} x_j}}}$$

$$\hat{g}_1(x) = \frac{1}{1 + e^{\sum_{j=1}^{\infty} w_{j,1} x_j}} \qquad \hat{g}_2(x) = \frac{1}{1 + e^{\sum_{j=1}^{\infty} w_{j,2} x_j}}$$

- Same functional form as logistic regression
- Use gradient descent to simultaneously learn g1 and g2, directly minimizing E = E1 + E2 + E3 + E4
- No word independence assumption, use both labeled and unlabeled data

Classifying Jobs for FlipDog

Gradient CoTraining

Classifying FlipDog job descriptions: SysAdmin vs. WebProgrammer

Gradient CoTraining

Classifying Capitalized sequences as Person Names

Eg., "Company president Mary Smith said today..." x1 x2 x1

Using	25 labeled 5000 unlabeled	2300 labeled 5000 unlabeled
labeled data only	.24	.13
	Error Rates	
Cotraining	.15 *	.11 *
Cotraining without fitting class priors (E4)	.27 *	
	* Quite sensitive to	weights of error terms E3 and E4

Co-EM [Nigam & Ghani, 2000]

Idea:

- Like co-training, use one set of features to label the other
- Like EM, iterate
 - Assigning probabilistic values to unobserved class labels
 - Updating model parameters (= labels of other feature set)

$$P(class|context_i) = \sum_{j} P(class|NP_j)P(NP_j|context_i)$$

$$P(class|NP_i) = \sum_{j} P(class|context_j)P(context_j|NP_i)$$

CoEM applied to Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]

Update rules:

$$P(class|context_i) = \sum_{j} P(class|NP_j)P(NP_j|context_i)$$

$$P(class|NP_i) = \sum_{j} P(class|context_j)P(context_j|NP_i)$$

CoEM applied to Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]

Update rules:

$$P(class|context_i) = \sum_{j} P(class|NP_j)P(NP_j|context_i)$$

$$P(class|NP_i) = \sum_{j} P(class|context_j)P(context_j|NP_i)$$

CoEM applied to Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]

Update rules:

$$P(class|context_i) = \sum_{j} P(class|NP_j)P(NP_j|context_i)$$

$$P(class|NP_i) = \sum_{j} P(class|context_j)P(context_j|NP_i)$$

Bootstrapping Results

locations

Some nodes are more important than others [Jones, 2005]

Can use this for active learning...

263

234

Noun-phrase	Outdegree
you	1656
we	1479
it	1173
company	1043
this	635
all	520
they	500
information	448
us	367
any	339
products	332
i	319
site	314
one	311
1996	282
he	269
customers	269
these	263

them time

Context	Outdegree
<x> including</x>	683
including <x></x>	612
<x> provides</x>	565
provides <x></x>	565
provide <x></x>	390
<x> include</x>	389
include <x></x>	375
<x> provide</x>	364
one of <x></x>	354
<x> made</x>	345
<x> offers</x>	338
offers <x></x>	320
<x> said</x>	287
<x> used</x>	283
includes <x></x>	279
to provide <x></x>	266
use <x></x>	263
like <x></x>	260
variety of <x></x>	252
<x> includes</x>	250

Component Size is Power-Law Distributed

[Jones, 2005]

Node Degree is Power-Law Distributed

CoTraining Summary

- Unlabeled data improves supervised learning when example features are redundantly sufficient
 - Family of algorithms that train multiple classifiers
- Theoretical results
- Many real-world problems of this type
 - Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]
 - Web page classification [Blum, Mitchell 98]
 - Word sense disambiguation [Yarowsky 95]
 - Speech recognition [de Sa, Ballard 98]
 - Visual classification of cars [Levin, Viola, Freund 03]

Bootstrapping: Learning to extract named entities

location?

I arrived in Beijing on Saturday.

 x_1 : I arrived in _____ on Saturday.

*x*₂: Beijing

Example 3: Word sense disambiguation [Yarowsky]

- "bank" = river bank, or financial bank??
- Assumes a single word sense per document
 - X1: the document containing the word
 - X2: the immediate context of the word ('swim near the ___')

Successfully learns "context → word sense" rules when word occurs multiples times in document.

Example 4: Bootstrap learning for IE from HTML structure [Muslea, et al. 2001]

 X_1 : HTML preceding the target

 X_2 : HTML following the target

R1: SkipTo "Phone : <i>| R2: BackTo "Fax" BackTo "(" | Name: <i>| Gino's </i>| SkipTo "Phone : <i>| (800) 111-1717 | (1) </i>| Fax: (616) 111-...

Example Bootstrap learning algorithms:

- Classifying web pages [Blum&Mitchell 98; Slattery 99]
- Classifying email [Kiritchenko&Matwin 01; Chan et al. 04]
- Named entity extraction [Collins&Singer 99; Jones&Riloff 99]
- Wrapper induction [Muslea et al., 01; Mohapatra et al. 04]
- Word sense disambiguation [Yarowsky 96]
- Discovering new word senses [Pantel&Lin 02]
- Synonym discovery [Lin et al., 03]
- Relation extraction [Brin et al.; Yangarber et al. 00]
- Statistical parsing [Sarkar 01]

Many Exploitable Redundancies

- Hyperlink words, web page words
 - (page classification, hyperlink word sense)
- Email subject line, email body
 - (email classification)
- Statements of same fact on many different websites
 - EventDateIs(ElvisBirthday, January 28)
- Assertions in both text, and tables
 - Semi-structured HTML
 - Excel spreadsheets
- Directory names, directory contents
- Activity clusters from email text, or social network
- Calendar events, email before and after meeting
- Deductive inference, when knowledge available

What is relation between "Elvis" and "January 8"?

Some agent strategies for generating tasks

- Collect more data from web
 - To learn about specific entities (e.g., "Rolling Stones")
 - To learn meaning of particular language (e.g., "will attend")
 - To locate easy-to extract facts (e.g., web pages with lists)
- Learn regularities from the populated KB
 - "Most LTI office names are of the form "NSH dddd"
- Explore specializations of ontological categories
 - What distinguishes personal home pages that contain publications from those that don't? Can this be predicted from other (extractable) features of the home page?
- Explore specializations of language structures
 - Which 'location' entities share surrounding language?
 e.g., "the city of ?x," Do they share other properties?

Some Types of Knowledge to Learn

- Linguistic regularities
 - {"spoon","fork","chopsticks"} occur often in "eat with my ____"
- HTML layout regularities
 - HTML lists often contain items of the same type
- Web site regularities
 - University departments often have a page listing all faculty
- Regularities over extracted facts
 - 'Professors typically have more publications than their advisees'
- Temporal stability
 - Birthdays don't change. Stock prices do.