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Learn to Read / Read to Learn

Thesis: We can achieve a breakthrough in NLP by
building a continuously learning, continuously reading
system, targeted toward understanding and extracting
80% of the factual content on the internet

wWhy now?
1. Recent progress in NLP

2. Recent progress in statistical machine learning
» Especially bootstrapping methods that leverage redundancy

3. The web provides huge corpus of highly redundant text



The Idea

Build on existing components

— Named entity extractors, question answerers, parsers,
coreference resolvers, ...

— Self-supervised learning algorithms
— Knowledge representations, ontologies, KBs, ...

e Create agent that formulates and pursues an infinite
stream of learning/reading/fact acquisition subgoals

e Learntoread/ Read to learn

* Primarily unsupervised (self-supervised)



Design goals for ReadTheWeb system

Nonstop 24x7 operation, pursuing two goals:
— Learning to read
— Reading the web

Begin with state-of-the-art methods (NLP, learning,
representation)

Architecture for improving continuously
— A growing knowledge base (with pointers back to text sources)
— A growing ability to understand complex text (and non-text)

<1 day barrier to entry for researchers



Design of the course

 Become experts in state of the art of semi-supervised
learning for NLP

e Design, implement, experiment with, and write up a
first ReadTheWeb system

e First 4 weeks: each team implements working semi-
supervised learner, for some aspect of NLP

 Next 8 weeks: we design and implement integrated
system

o All 13 weeks: cover state-of-art research papers



What we’ll build on

« State of the art semi-supervised learning and NLP
algorithms

e EXisting software
— Knowledge repository (SCONE)
— Text learning package (Minor Third)
— Text annotation framework (UIMA)
— Web crawl / web query engine

e Your expertise, creativity and hard work



Course Logistics/Details

 This is a research project disguised as a course

o This will be hard work, and fun

e« Some guest lectures (e.g., Oren Etzioni, Feb 9)

* No exams

e Grading based on projects and course participation

e Course web site will appear by tomorrow, off
http://www.cs.cmu.edu/~tom
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CoTraining Algorithm #1
[Blum&Mitchell, 1998]

Given: labeled data L,
unlabeled data U
Loop:
Train g1 (hyperlink classifier) using L
Train g2 (page classifier) using L
Allow g1 to label p positive, n negative examps from U
Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L




CoTraining: Experimental Results

* begin with 12 labeled web pages (academic course)
e provide 1,000 additional unlabeled web pages
e average error: learning from labeled data 11.1%;

e average error: cotraining 5.0%
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CoTraining setting:
e wish to learn f: X =2 Y, given L and U drawn from P(X,Y)
o features describing X can be partitioned (X = X1 x X2)

such that f can be computed from either X1 or X2

(391,92)(Vx € X) g1(x1) = f(z) = go(x2)

One result [Blum&Mitchell 1998].
o |If
— X1 and X2 are conditionally independent given Y
— f is PAC learnable from noisy labeled data
e Then
— f is PAC learnable from weak initial classifier plus unlabeled data



Co-Training Rote Learner
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Co-Training Rote Learner
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Expected Rote CoTraining error given m labeled examples, rote learning,
perfectly redundantly sufficient

CoTraining setting :

learn f: X Y

where X =X;x X,

where x drawn from unknown distribution

and 39,, 0, (\V/X)gl(xl) — gz(xz) = f (X)

E[error]:ZP(XE g.)A-P(xeg)" %

Where g Is the jth connected component of graph ¢
of L+U, m is number of labeled examples



How many unlabeled examples suffice?

Want to assure that connected components in the underlying
distribution, Gy, are connected components in the observed
sample, G

sy
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[
O
®
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Gp Gs

O(log(N)/a) examples assure that with high probability, G4 has same
connected components as G, [Karger, 94]

N is size of Gy, a Is min cut over all connected components of G,



Co Training

 What's the best-case graph? (most benefit from
unlabeled data)

 What the worst case?

 What does conditional-independence imply about
graph?
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PAC Generalization Bounds on CoTraining

[Dasgupta et al., NIPS 2001]

This theorem assumes X1 and X2 are conditionally independent given Y

Theorem 1 With probubility at leust 1 — § over the choice of the sumple S, we have that
for all hy and ha, if vi(h1,h2,0) > 0 for1 < i < k then (a) f is a permutation and (b) for
all1 < i <k,

Plhy#i| fly) =i, #1) < Pl Filha=t 7 L)+ eilh, ha, 0)
Yi(h1, ha, 6)

The theorem states, in essence, that 1f the sample size 1s large, and hy and h- largely agree
on the unlabeled data, then P(hy # i | ho = ¢,hy; # L) is a good estimate of the error rate

P(hy #i | fly) = i, by # L).



What if CoTraining Assumption
Not Perfectly Satisfied?

®
O O

« ldea: Want classifiers that produce a maximally
consistent labeling of the data

« If learning is an optimization problem, what function
should we optimize?



What Objective Function?

E=El1+E2+c,E3+C,E4

Error on labeled examples
- Y y-6,(%)) 7
S Ek Disagreement over unlabeled
E2= =00

<X,y>elL

E3 = Z (gl (Xl) — Qz (X2 ))2 Misf}to estimated class priors
xeU

6,(4)+6,06)))
[(lqu@i’] (|L|+|U|XELZUU 2 j]




What Function Approximators?

A 1 A 1
6,(0=—si 5 6.(0=—57

1+¢e! 1+¢e!

« Same functional form as logistic regression

« Use gradient descent to simultaneously learn g1 and g2,
directly minimizing E=E1 + E2 + E3 + E4

 No word independence assumption, use both labeled and
unlabeled data



Classifying Jobs for FlipDog

Employers = Support

FlipDog Find/Jobs Ressarch|EMpIoyers

Search Results

% Mid-Sr. Sun Hy E:r?tfﬂigr?”;ge Grad wi
! M
Engineer Fleasanton, — M

zensystems  CA IT Recruiting Team.

Sort results by: | Date Posted =] Search these jobs for: | &8 Search tips

Wk weark for one
Shock startup when you can
wark for many?

26 -50 of 159 jobs shown below (

Previous ] [Hnre Results

C++/)ava Consultants at Elite Placement Services ®
Job Mumber: C1 Salary Range: $80K Job Description: Functions of this position include the consulting, development
and implementation of EAl solutions supporting e-commerce and B2B initiatives for...

Movermber 01, 2000
Houston, T
Computing/MIS
ooftware Development

Chief Software srchitect at Elite Placement Services B
Job Mumber: C3A1 Salary Hange: to $150K Joh Description: Responsible for the end-to-end architecture of all n-
tiered web-based applications and complementary products. Provide design direction for the. .

Movermber 01, 2000
Houston, T
Computing/MIS
Software Developrment

Web Application Developers at MI Systerns, Inc. ©
Location: Houston, T Last Updated: 100400 Job Type: Full-Time Contract Length: O Salary: open Hourly Pay: See
on Synopsis: Permanent Opportunities (2) Application Developers with. .

Movernber 01, 2000
Houston, T
Computing/MIS

X1: job title ) Internet Development
b‘a\es Consulting Engineer at Wisual Numerics, Inc. X2 J(_)b_ MNovemnber 01, 2000
Job Code 00-022-H Back to Top WHAT'S THE JOB? Performs pra-sales tech descrlptlon ducts to Houston, TX
customers and non-customers. Technical support includes providing verbal a Cornputing/MI=
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Houston, T
Computing/MIS
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Gradient CoTraining
Classifying FlipDog job descriptions: SysAdmin vs. WebProgrammer
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Gradient CoTraining

Classifying Capitalized sequences as Person Names

Eg., “Company president Mary Smith said today...”

Using
labeled data
only

Cotraining

Cotraining
without

fitting class
priors (E4)

x1 X2 x1
25 labeled 2300 labeled
5000 unlabeled 5000 unlabeled
24 13
Error Rates
15 7 A1 7
27 °

* Quite sensitive to weights of error terms E3 and E4



Co-EM [Nigam & Ghani, 2000]

ldea:

e Like co-training, use one set of features to label the
other

* Like EM, iterate
— Assigning probabilistic values to unobserved class labels
— Updating model parameters (= labels of other feature set)

P(class|context;)

Z P(class|N Pj) P(N Pj|context;)
J

P(class|NF;)

Z P(class|context;) P(context;|N F;)
J



CoEM applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]

the dog . <X> ran quickly

australia travelled to <X>

france . <X 1s pleasant
the canary
1slands

Update P(class|context;) = ZP('{'?‘I'Q'SSLMP_;?)P(ij|f:ont€;1:t.i)
J

rules: P(class|NP;) = ZP(c!.asS|coﬂ.te.rtj)P(cmltemtj|NP?;)
J



CoEM applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]
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Z P(class|N Pj) P(N Pj|context;)
J

Z P(class|context;) P(context;|N F;)
J

Update P(class|context;)

rules: P(class|NP;)



CoEM applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]
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rules: P(class|NP;)



Bootstrapping Results

Precision
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Some nodes are more important than others

Can use this for active learning...

[Jones, 2005]

Moun-phrase | Outdegree Context Outdegree
I 1656 <% > Including 653
we 1479 including <x= 612
it 1173 <¥ > provides 565
company 1043 provides < x> 565
this 635 provide < x> 390
all 520 <¥ > include 389
they 500 include <x= 375
information 448 <¥ > provide 364
us 367 one of <x= 354
any 339 <X made 345
products 332 < ¥ > Offers 338
i 319 offers < x> 320
site 314 <X > said 287
one 311 <X > Used 283
1996 282 includes <x>= 279
he 269 to provide <x= 266
customers 269 LUSe < x> 263
these 263 like <x= 260
them 263 variety of < x> 252
time 234 <¥ > includes 250




Component Size is Power-Law Distributed
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outdegree

[Jones, 2005]



CoTraining Summary

« Unlabeled data improves supervised learning when
example features are redundantly sufficient
— Family of algorithms that train multiple classifiers

 Theoretical results

 Many real-world problems of this type
— Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]
— Web page classification [Blum, Mitchell 98]
— Word sense disambiguation [Yarowsky 95]
— Speech recognition [de Sa, Ballard 98]
— Visual classification of cars [Levin, Viola, Freund 03]



Bootstrapping: Learning to extract named entities

location?

/

| arrived in Beijing on Saturday.

X,: larrived In on Saturday.

Xy Beijing



Example 3: Word sense disambiguation [Yarowsky]

e “pbank” = river bank, or financial bank??

« Assumes a single word sense per document
— X1: the document containing the word
— X2: the immediate context of the word (‘swim near the ")

Successfully learns “context = word sense” rules
when word occurs multiples times in document.



Example 4: Bootstrap learning for IE from HTML structure
[Muslea, et al. 2001]

X, HTML preceding X,: HTML following
the target the target
R1: SkipTo "Phone : <i>" R2: Backlo "Fax" BackTo "("
= -

Name: <i> Gino’s </i><p> Phone: <i>| (800) 111-1717 /i><p> Fax: (616) 111-...
-~ 2=




Example Bootstrap learning algorithms:

« Classifying web pages [Blum&Mitchell 98; Slattery 99]

o Classifying email [Kiritchenko&Matwin 01; Chan et al. 04]
 Named entity extraction [Collins&Singer 99; Jones&Riloff 99]
e Wrapper induction [Muslea et al., 01; Mohapatra et al. 04]

* Word sense disambiguation [Yarowsky 96]

* Discovering new word senses [Pantel&Lin 02]

e Synonym discovery [Lin et al., 03]

 Relation extraction [Brin et al.; Yangarber et al. 00]

o Statistical parsing [Sarkar 01]



Many Exploitable Redundancies

* Hyperlink words, web page words
— (page classification, hyperlink word sense)

 Emaill subject line, email body
— (email classification)

o Statements of same fact on many different websites
— EventDatels(ElvisBirthday, January 28)

e Assertions in both text, and tables
— Semi-structured HTML
— EXxcel spreadsheets

* Directory names, directory contents

« Activity clusters from email text, or social network
« Calendar events, email before and after meeting
« Deductive inference, when knowledge available
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What is relation between “Elvis” and “January 8”7
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Elvis Presley. The Early Years
. Wiew, Elvis Aaron Presley January 8, 1935 - August 16, 1977 Elvis charted
more songs on Billboard's Hot 100 than any other artist. ...

weary, fiftiesweeb, comdelvis htm - 35k - 19 Sep 2004 - Cached - Similar pages

Listmanial Celbrate the king every January 8 and August 16
... Celbrate the king every January 8 and August 16 by Stephen Werhaeren, Movie Watcher. ...
4. Elvis - His Best Friend Remembers D%D (DWD) Average Customer Review: ...

whany, armazon. comdexec/obidos! tofistmaniallist-browse/ X2 SRMA0IBMZ2WT - 72k - Cached - Similar pages

Elvis Aaron Presley was born on January 8
Back. Elvis Aaron Presley was born on January 8, 1935, Elvis is known as
the "King of Rock and Rall". Elvis' music was influenced ...

w2152 hfRock %20website/Elvis. htm - Bk - Cached - Similar pages

metaiaze - Born onJanuary 8
... 18 people born on January 8 1937 - Shirley Bassey (singing) 1992 ... would take off.".
1935 - Elvis Presley (singing/entertainment ican) “l knew ...

weanwy. metamaze.com/bdays/0108. html - 13k - Cached - Similar pages

winny On-This-Diay.com - January 8

January 8. 1705 - Georg Friedrich Handel's opera "Almira” was produced in Hamburg. ...
1957 - Elvis took the US Army pre-induction exam on his 22nd birthday. ...

wary. an-this-day. comfonthisday/thedays/music/jan08 htrm - 4k - Cached - Similar pages

Elvis Presley
. Gladys, Elvis and Wernon Presley 1937 Born January 8, 1935 in East Tupelo,

Mizsissippi, Presley was the son of Gladys and Vernon Presley, a sewing machine ...
weany. history-of-rock. comfelvis_presley. htm - Bk - Cached - Similar pages

Elvis Presley January 8 1935 - August 16, 1977

Elvis Presley January 8, 1935 - August 16, 1977, A young woman pulls a ribban

from a floral wreath near the site of Elvis Presley's ...

weany tennessean. comdslideshows! 2002/entertainment/elvis25 shtml - Bk - Cached - Similar pages
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Some agent strategies for generating tasks

Collect more data from web

— To learn about specific entities (e.g., “Rolling Stones”)

— To learn meaning of particular language (e.g., “will attend”)
— To locate easy-to extract facts (e.g., web pages with lists)

Learn regularities from the populated KB
— “Most LTI office names are of the form “NSH dddd”

Explore specializations of ontological categories

— What distinguishes personal home pages that contain
publications from those that don’'t? Can this be predicted
from other (extractable) features of the home page?

Explore specializations of language structures
— Which ‘location’ entities share surrounding language?
e.g., “the city of ?x,” Do they share other properties?



Some Types of Knowledge to Learn
Linguistic regularities

— {“spoon”,"fork”,"chopsticks”} occur often in “eat withmy ___ "

HTML layout regularities
— HTML lists often contain items of the same type

Web site regularities
— University departments often have a page listing all faculty

Regularities over extracted facts
— ‘Professors typically have more publications than their advisees’

Temporal stability
— Birthdays don’t change. Stock prices do.



