
Scone Knowledge Base
for “Read the Web” Project

Scott E. Fahlman
Research Professor, LTI & CSD

sef@cs.cmu.edu

What is a Knowledge Base?
• A symbolic knowledge base (KB) system is like a

database, except:
– Designed to hold less regular patterns.

• Entities in a type hierarchy. Multiple inheritance and
exceptions.

• Statements about these entities.
• User-defined roles (slots) and relations.
• Type restrictions on slots.

– Support for simple inference.
• Inheritance (respecting cancellation).
• Type checking (splits).
• Simple rules.
• For more complex inference, attach and trigger Lisp

functions.
– Support for search.

• Find all known entities that have some set of features.

Scone
• Scone is a software knowledge-base system with emphasis on

performance, scalability, and ease of use.
– Engine in Common Lisp, runs as a server.
– Run it file-to-file, interactive, or use Java “gateway” by Ben Lambert.
– Should be able to handle a few million entities and statements on a

high-end workstation.
– We have an AMD-64 Linux server with 8GB, will send out info on “rtw-

guest” account.

• Scone is now under development.
– Engine, some initial KBs, Programmer level manual now exist.
– Has been used some, but this course will be a big test.
– Will soon be released as open-source.

• Currently, knowledge is added in a specialized entry language
(Lisp).

• Work is under way to parse simple English sentences into Scone.

Role of Scone in RtW

• Place to store the information your systems
extract.

• Initial Scone ontology establishes a common
vocabulary for entities and propositions.

• Simple type-checking of entities and slot-fillers.

Advanced:

• More complex sanity checking.

• Background knowledge of all kinds.

Elements and Names
• Each individual, type, and statement in Scone is an “element”.

– Unique name surrounded by curly braces. {Scott Fahlman}
– This represents the concept.

• “English” names are Lisp strings: “S. E. Fahlman” or “Scott”.
– Could be a multi-word phrase like “Read-the-Web course”.
– Normally preserve case, but ignore it during matching.
– Syntax tags (optional).

• An element may be associated with several names.
• A name may be associated with several elements, so it may be

necessary to disambiguate – perhaps just ask the user, or perhaps
be more clever.

• Someday we will support multiple natural languages and sub-
languages.
– Unicode strings with labeled word-meaning links.
– Sub-languages like “techy English”.

Splits

• A type or instance can have multiple immediate
superiors. Inherits from all of them.

• Create split-sets to indicate that N types are disjoint – no
members in common.

• (new-split-types {person}
‘({male} {female}))

• (new-split-types {person}
‘({child} {adult}))

• (new-intersection-type {boy}
‘({child} {male}))

• These splits are efficiently checked every time a new
element is created.

• Also checked by can-x-be-a-y? function.

Example: Type Hierarchy
• ;;; Create the “room” type.
• (add-type {room} {place})

• ;;; Every room has a size.
• (add-indv-role {room size} {room} {area measure})

• ;;; Rooms come in various flavors.
• (add-split-subtypes {room}

‘({classroom} {office} {lab}))
• (add-split-subtypes {room}

‘({window room} {non-window room}))

• ;;; Create an individual room.
• (add-indv {Wean 8214} {office})

• (add-is-a {Wean 8214} {window room})
• (the-x-of-y-is-z {room size} {Wean 8214}

(add-measure 180 {square foot}))

Special User-Defined “Add”
Functions

• (add-person “Elvis Aaron Presley”
:birthday “January 1 1935”
:profession {entertainer}
:death-date “6/32/77”
:shoe-size 10.5
:shoe-size-certainty .85
:nicknames ‘(“the King” “tubby”))

• This can parse subfields for dates, etc., then adds
multiple elements to Scone, checking for contradictions.

• Adds all common forms of the name: “Elvis”, “E. A.
Presley”, “Elvis A. Presley”, plus nicknames, all referring
to {elvis aaron presley} concept (indv element in Scone).

Example: User-Defined Relation

• ;;; Create the “adjacent to” relation.
• (add-relation {adjacent to}

:a-instance-of {place}
:b-instance-of {place}
:symmetric t)

• ;;; Make some statements.
• (add-statement {Wean 8212} {adjacent to} {Wean 8214})

• (add-statement {Wean 8214} {adjacent to} {Wean 8216})

• ;;; Some queries:
• (statement-true? {Wean 8214} {adjacent to} {Wean 8212}) => T
• (statement-true? {Wean 8212} {adjacent to} {Wean 8214}) => T

• (statement-true? {Wean 8212} {adjacent to} {Wean 8216}) => NIL
• (show-rel {Wean 8214} {adjacent to})
• {Wean 8212}

• {Wean 8216}

Example: Queries

• (is-x-a-y? {Wean 8214} {office}) => T

• (is-x-a-y? {Wean 8214} {room}) => T

• (can-x-be-a-y? {Wean 8214} {lab}) => NIL

• (show-the-x-of-y {room size} {Wean 8214})

• {180 square foot}

• (show-all-instances {classroom})

• {Wean 5409}

• {NSH 1304}

• … and 120 more.

Contexts

• Scone has an efficient, lightweight way to create distinct
mini-worlds and to reason within them.

• Every entity in Scone exists in a certain context, and
every statement is true in a certain context.

• Contexts form a hierarchy, so it is easy to clone one,
then make a few specific changes.
– {Harry Potter World} is like {England today}, but with some

specific changes.

• Can create a hypothetical context, reason about it, then
destroy or abandon it.

• This mechanism is good for representing “X said…”, “X
believes…”, “X wants a world in which…”, etc.

• Also good for representing changes in the world due to
some event: before and after contexts.

Interacting with Scone
(Ben Lambert)

• You can interact with Scone
– Interactively, through the Lisp read/eval/print loop,

…or…
– through a TCP/IP socket.

• Scone is single-user (for now), so each group
will need to start its own server.

• More details on starting up a server will come
soon.

• We have an example class in Java for talking to
Scone via TCP/IP (SconeClient.java)

Interacting with Scone (cont.)

• Once you are connected, Scone will send a “[PROMPT]”
to tell you it’s ready to receive a command.

• You can then send a command to Scone terminated by a
newline (and no other newline characters)
– E.g. “(new-indv {Tom Mitchell} {person})\n”

• Scone will always send a reply. Occasionally it’s more
than one line, so keep reading until you get another
“[PROMPT]”

• When you’re done send: “(disconnect)”

Example interaction with
Scone

<TCP/IP Connection established>
Server: [PROMPT]
Client: (new-indv {Tom Mitchell} {person})
Server: {common:Tom Mitchell}
Server: [PROMPT]
Client: (new-indv {Elvis Presley} {person})
Server: {common:Elvis Presley}
Server: [PROMPT]
Client: (disconnect)
<Connection closed>

