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Today: Readings:
* Linear regression _
+ Bias/Variance/Unavoidable Required:

errors » Bishop: Chapt. 3 through 3.2
» Bayes Nets + Bishop: Chapt. 8 through 8.2
Regression

Wish to learn f:X->Y, where Y is real, given {<x',y'>...<x",y">}
Approach:

1. choose some parameterized form for P(Y|X; 0)
( © is the vector of parameters)

2. derive learning algorithm as MLE or MAP estimate for 6




1. Choose parameterized form for P(Y|X; 0)

Assume Y is some deterministic f(X), plus random noise
y=f(z)+e where ¢ ~ N(0,0)

Therefore Y is a random variable that follows the distribution

plylz) = N(f(z),0)

and the expected value of y for any given x is E,, ,[y]=f(x)

Consider Linear Regression
p(ylz) = N(f(z),0)

E.g., assume f(x) is linear function of x

x) = wp+ Z W;T;
(y\m wO + szxu

Ep(:ﬂ,y) [y|$] = wp + Z W;T;

Notation: to make our parameters explicit, let's write
W =< wy, w; . n >
plylz;, W) = wo+szm“




Training Linear Regression:

p(ylz; W) = N(wy + wiz, 0)

How can we learn W from the training data?

Training Linear Regression:

p(ylz; W) = N(wo + w1z, 0)

How can we learn W from the training data?

Learn Maximum Conditional Likelihood Estimate!

_ Il
WwucLe = arg mv%XHp(y |z, W)

— l AP
Wuycre = arg mvgle: np(y'|z’, W)

where

1
p(ylz; W) =

V2mo?




Training and Regression

10l

Learn Maximum Conditional Likelihood Estimate:jf,,of’*'”;"

WicLe = Inp(y'|z', W ’
MCLE = aIrg mvgx; HP(Z/ |~T ) )
Where p(y'x, W) — 1 ei%(y_fo:’ﬂ;w )2

V2mo?
> np(y'lh; W) =
l

. _ (i l. 2
sO: WMCLE—arng[a/le: (y' — f(z"; W)

= argmin zl:(yl — [ w))?

Training Linear Regression:

Learn Maximum Conditional Likelihood Estimate:ﬁ,f«f»f‘”"/w

_ : . . 2
WwyceLe = arg min ;(?J flz; W)

Can we derive gradient descent rule for training?
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Training rule:
AW = —nVE[d]
ie.,
oF

Aw; = U




Gradient Descent:

Batch gradient: use error Ep(w) over entire training set D
Do until satisfied:

E E
1. Compute the gradient VEp(w) = 9 (;EW) . 9 quju(w>
0 n

2. Update the vector of parameters: w <— w —nVFE D(W)

Stochastic gradient. use error E;(w) over single examples d € D
Do until satisfied:

1. Choose (with replacement) a random training example d € D

2. Compute the gradient just for d: VEy(w) = OFu(w)  0Ey(w)

owy = Ow,
3. Update the vector of parameters: w <— w — nV Ey(w)

Stochastic approximates Batch arbitrarily closely as 77 — 0
Stochastic can be much faster when D is very large
Intermediate approach: use error over subsets of D

Training Linear Regression:

Learn Maximum Conditional Likelihood Estimatejf?;q,’,y,,.u,,:

_ : (o 2
Wuore = arg min ;(?J f(z; W)
Can we derive gradient descent rule for training?

Oy~ fmW)P
ow;

And if f(z) =wy+ Z W;iT;
i wj <—wi+772(yl—f(37l;w)) z}
!




Training Linear Regression:

Learn Maximum Conditional Likelihood Estimate

_ - el 2
WwycerLe = arg min ;(y f(z; W)

Can we derive gradient descent rule for training?

Oy — flW))* _ 2= F@ W)
o = ; 2Ay = fla; W)=~

@ W)
- le =2y — flas W)=~

And if f(x) = wo+ szl’z
i

Gradient descent rule: w; < w;+n Y (' — f(z;W))
l

How about MAP instead of MLE estimate?

Let’'s assume Gaussian prior: each w, ~ N(0, o)

p(w;) = %exp (_%)

Then MAP estimate is
1 2 l l.
W = argmax —— dowi+ ) hPYIXLw)

w;eW l€training data
= argmin L E w2+ E (' — f (2 W))?
w202 ¢ £ ’
w;EW l€training data

Gradient Wi — \ws + 1 L)) 2
doscent, | U Wi AwiE ) — flai W) o




Consider Linear Regression
p(ylz) = N(f(x),0) |

E.g., assume f(x) is linear function of x

.'L‘) = wq + Zwixi

p(y|z) = w0+2wzazl,

wi < w; — dwi+n > (Y — fa; W)
l

Consider Linear Regression
p(ylz) = N(f(2),0) |

E.g., assume f(x) is linear function of |¢;(z)

= Z w;p;(x)
y|$ (Z wz¢z )

wi = wi — Aw; +n) (Y = f(z"; W) ¢i(a)
l




Regression — What you should know
Under general assumption  p(y|z; W) = N(f(z; W), o)

MLE corresponds to minimizing Sum of Squared prediction Errors
MAP estimate minimizes SSE plus sum of squared weights

Again, learning is an optimization problem once we choose our
objective function

* maximize data likelihood
* maximize posterior probability, P(W | data)

Again, we can use gradient descent as a general learning algorithm
» aslong as our objective fn is differentiable wrt W

Nothing we said here required that f(x) be linear in x -- just linear in W
Gradient descent is just one algorithm — linear algebra solutions too

Decomposition of Error in Learned Hypothesis
1. Bias
2. Variance

3. Unavoidable error




Bias — Variance decomposition of error
Reading: Bishop chapter 3.2 (different notation)

» Consider simple regression problem f:X->Y

y=1(x) + ¢

\
‘ noise N(0,0)

deterministic

What is expected error of a hypothesis learned (estimated)
from randomly drawn training data D?

&Jllﬁmm—w%w@mw@m

learned estimate of f(x), from training data D

Sources of error

+ What if we have perfect learner, infinite data?
— Our learned h(x) satisfies h(x)=f(x)
— Still have remaining, unavoidable error
because of ¢
y=1f(x)+¢, ¢ ~N(0,0)




Sources of error

« What if we have only n training examples?
« What is our expected error

— Taken over random training sets of size n,
drawn from distribution D=p(x,y) ?

Bias and Variance

given some estimator A for some parameter 06, we define
bias(A) = E[A] — 0
var(A) = E[(A — E[A])?
e.g., 0 is probability of heads for a coin, A is the MLE
estimate for 8, based on n independent coin flips

A is a random variable, sampled by reflipping the coins
Expected value is taken over different reflippings

is A biased or unbiased estimator for 6 ?

variance decreases as sqrt(1/n)
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Decomposition of error: y = f(x) + &; £~ N(0,0)
/Iearned estimate of f(x), from training data D
By | [ [i(e) = upluiz)nt) s
= uwnavotdable Error + bias? —+ variance

unavoidable Error = o>

vias? = [ (Eplho(a)] - £()) pa)ds

variance = /ED[(hD(x) — Ep[hp(x)])?] p(x)dx

Error Decomposition: Summary

Expected true error of learned P(y|x) for regression
(and similarly for classification) has three sources:

1. Unavoidable error
— non-determinism in world prevents perfect predictions

2. Bias

— even with infinite training data, hypothesis h(x) might
not equal true f(x). E.g., if learner’s hypothesis
representation cannot represent the true f(x)

3. Variance

— Whenever we have only finite training data, the sample
of just n training examples might represent an empirical
distribution that varies from the true P(Y|X). i.e., if we
collect many training sets of size n, the empirical
distribution they represent will vary about P(Y|X).
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