
1 

Machine Learning 10-601 
 Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

 
October 6, 2011 

Today: 
•  Linear regression 
•  Bias/Variance/Unavoidable 

errors 
•  Bayes Nets 

Readings: 
 
Required: 
•  Bishop: Chapt. 3 through 3.2 
•  Bishop: Chapt. 8 through 8.2 

Regression 
Wish to learn f:XàY, where Y is real, given {<x1,y1>…<xn,yn>} 
 
Approach: 
 
1.  choose some parameterized form for P(Y|X; θ) 

( θ is the vector of parameters) 
 

2.  derive learning algorithm as MLE or MAP estimate for θ 
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1. Choose parameterized form for P(Y|X; θ) 
 

Assume Y is some deterministic f(X), plus random noise 
 
 
Therefore Y is a random variable that follows the distribution 
 
 
and the expected value of y for any given x is Ep(x,y)[y]=f(x) 
 

Y 

X 

where 

Consider Linear Regression 
  

 
E.g., assume f(x) is linear function of x 
 
 
 
 
 
 
Notation: to make our parameters explicit, let’s write 
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Training Linear Regression 
  

 
How can we learn W from the training data? 
 
 

Training Linear Regression 
  

 
How can we learn W from the training data? 
 
Learn Maximum Conditional Likelihood Estimate! 
 
 
 
 
where 
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Training and Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
where 
 
 
 
 
 
so: 
 
 

Training Linear Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
Can we derive gradient descent rule for training? 
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 Gradient Descent:  
Batch gradient: use error           over entire training set D 
Do until satisfied: 

    1. Compute the gradient  

    2. Update the vector of parameters:  

 
Stochastic gradient: use error          over single examples 
Do until satisfied: 
    1. Choose (with replacement) a random training example  

    2. Compute the gradient just for    : 

    3. Update the vector of parameters:  
 
Stochastic approximates Batch arbitrarily closely as 
Stochastic can be much faster when D is very large 
Intermediate approach: use error over subsets of D  

Training Linear Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
Can we derive gradient descent rule for training? 
 
 
 

And if  
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Training Linear Regression 
 Learn Maximum Conditional Likelihood Estimate 

 
 
Can we derive gradient descent rule for training? 
 
 
 
 
 
 
And if                                        … 
 
 
 
Gradient descent rule:  

How about MAP instead of MLE estimate? 

Let’s assume Gaussian prior: each wi ~ N(0, σ) 
 
 

Then MAP estimate is     

Gradient  
descent: 
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Consider Linear Regression 
  

 
E.g., assume f(x) is linear function of x  
 
 
 
 
 
 
 
 
 
 

Consider Linear Regression 
  

 
E.g., assume f(x) is linear function of  
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Regression – What you should know 
Under general assumption 
 
1.  MLE corresponds to minimizing Sum of Squared prediction Errors 
2.  MAP estimate minimizes SSE plus sum of squared weights 

3.  Again, learning is an optimization problem once we choose our 
objective function 
•  maximize data likelihood 
•  maximize posterior probability, P(W | data) 
 

4.  Again, we can use gradient descent as a general learning algorithm 
•  as long as our objective fn is differentiable wrt W 

5.  Nothing we said here required that f(x) be linear in x -- just linear in W  
6.  Gradient descent is just one algorithm – linear algebra solutions too  
 
 
 
 
 
 
 
 
 

Decomposition of Error in Learned Hypothesis 
 
1. Bias 
 
2. Variance 
 
3. Unavoidable error 
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•  Consider simple regression problem f:XàY  

y = f(x) + ε	


	



	



	



	



What is expected error of a hypothesis learned (estimated) 
from randomly drawn training data D? 
  

noise N(0,σ) 

deterministic 

Bias – Variance decomposition of error  
Reading: Bishop chapter 3.2 (different notation) 

learned estimate of f(x), from training data D  

Sources of error 
•  What if we have perfect learner, infinite data? 

– Our learned h(x) satisfies h(x)=f(x) 
– Still have remaining, unavoidable error 

because of ε	


   y = f(x) + ε, 	


 
 
                                 

ε  ∼ N(0,σ) 
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Sources of error 
•  What if we have only n training examples? 
•  What is our expected error 

– Taken over random training sets of size n, 
drawn from distribution D=p(x,y) ?	



	


 

given some estimator A for some parameter θ, we define 
 
 
 
e.g., θ is probability of heads for a coin, A is the MLE 

estimate for θ, based on n independent coin flips 
A is a random variable, sampled by reflipping the coins 
Expected value is taken over different reflippings 
 
is A biased or unbiased estimator for θ ? 
 
variance decreases as sqrt(1/n) 

Bias and Variance 
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Decomposition of error: y = f(x) + ε;   ε ∼ N(0,σ) 
learned estimate of f(x), from training data D  

Error Decomposition: Summary 
Expected true error of learned P(y|x) for regression 
(and similarly for classification) has three sources: 
1.  Unavoidable error  

–  non-determinism in world prevents perfect predictions 

2.  Bias 
–  even with infinite training data, hypothesis h(x) might 

not equal true f(x).  E.g., if learner’s hypothesis 
representation cannot represent the true f(x) 

3.  Variance 
–  Whenever we have only finite training data, the sample 

of just n training examples might represent an empirical 
distribution that varies from the true P(Y|X).  i.e., if we 
collect many training sets of size n, the empirical 
distribution they represent will vary about P(Y|X). 


