Overfitting and Model selection

Aarti Singh

Machine Learning 10-701/15-781
Feb 20, 2014

ACHI

True vs. Empirical Error

True Error: Target performance measure

Classification — Probability of misclassification P(f(X) #Y)
Regression — Mean Squared Error E[(f(X) — Y)?]

Performance on a random test point (X,Y)

Empirical Error: Performance on training data

1 n
Classification — Proportion of misclassified examples — Z 1f(X)£Y;
ni=1
Regression — Average Squared Error 1 Z (F(X,) - Y)2

’]/_

Overfitting

Is the following predictor a good one? f*(z) f(x)
Yi. r=X;fori=1,....n
flz) = { any value, otherwise
[
| R

What is its empirical error? (performance on training data)
zero |

What about true error?
> Zero

Will predict very poorly on new random test point:
Poor generalization |

Overfitting
If we allow very complicated predictors, we could overfit the

training data.

Examples: Classification (1-NN classifier)

Football player ?

© No
@ Yes

Overfitting
If we allow very complicated predictors, we could overfit the

training data.

Examples: Regression (Polynomial of order k — degree up to k-1)

1.5

k=1 //\ k=2

0.5
£
0 ; : r ; r : r ; r 0 ; : r ; r : r ; r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.4 5
.
- - %
k— 3 1.2 k_ 7 0 /
5L
1L
-10-
08| 15l
0.6 20 |
0.4 25|
-30 -
0.2
-351
(0] i
% 40

-0.2 -45

r c c r c c c r c r c c r c c c r c
0 0.1 0.2 03 04 05 06 07 08 09 1 0 0.1 0.2 03 04 05 06 07 08 09 1

Effect of Model Complexity

If we allow very complicated predictors, we could overfit the
training data.

Prediction 4 : —
Error ' fixed # training data
True error
Empirical error =~
| T _ .
- | > _
underfitting overfitting Complexity

Best

Model @

Empirical error is no longer a
good indicator of true error

Examples of Model Spaces

Model Spaces with increasing complexity:

Nearest-Neighbor classifiers with varying neighborhood sizes k=1,2,3,...
Small neighborhood => Higher complexity

Decision Trees with depth k or with k leaves
Higher depth/ More # leaves => Higher complexity

* Regression with polynomials of order k=0, 1, 2, ...
Higher degree => Higher complexity

Kernel Regression with bandwidth h
Small bandwidth => Higher complexity

Restricting Model Complexity

True Error/Risk Empirical Error/Risk
R(f) = Exvlloss(F(X), V) R() = Yo loss (00, %)

Optimal Predictor

f* =arg mfin R(f)

Empirical Risk Minimizer over class J

AN

fn = argmin (f)

Effect of Model Complexity

Want f» to be as good as optimal predictor f*

Excess Risk R(f,) — R(f*)= R(f,) - inf R(f) + inf R(f) = R(f")

~ —~

”

estimation error approximation error

finite sample size «—____ Due to randomness Due to restriction
of training data of model class

R(fn) F

Estimation

error

Excess risk

o)

Approx. error

Effect of Model Complexity

R(fn) = R(f*)= \R(fn)—}ger(f) + }ger(f)—R(f*)

~ Y o

7

estimation error approximation error

estimation
error

approximation
error

Complexity of F

Bias — Variance Tradeoff

f(X)
* 2 Y Mé
Y=5(X)+e e~NO02) T

Regression:
. -
R(f*)=Exy[(f*(X) — Y)?] = E[¢’] = o° Notice: Optimal predictor
does not have zero error
R(fn) = Ex.y.p,[(fn(X) — Y)?] Dy, - training data of size n

— Ex.y . [(Fo(X)—Ep, [Fo (OD2] + Exy [(Ep, [Fu ()] = F5(X))2] + 02
| , o , o

variance bias? Noise var

\ /

Random component = est err = approx err

Bias — Variance Tradeoff

3 Independent training datasets

Large bias, Small variance — poor approximation but robust/stable

Small bias,

“o 0.1 0.2 03 04 05 06 07 08 09 1 “o 0.1 0.2 03 04 05 06 07 08 09 1 “o 0.1 0.2 03 04 05 06 07 08 09 1

Bias — Variance Tradeoff: Derivation

F4(X)
* oy N/\/\é
V=Ff(X)+e e~N(0,0°) TR

o0,

Regression:

v

R(f*)=Exy[(f*(X) — Y)?] = E[¢’] = o° Notice: Optimal predictor
does not have zero error

As in HW1 solution, we can write the MSE of any function f as
R(f) =E[(f(X) - Y)?]

=i
|
E

Bias — Variance Tradeoff: Derivation

fH(X)
. * 2 Y '.ﬁ—'./'\/\.é
Regression: Y = f7(X) +e e ~ N(0,0%) = 3

o0,

v

R(f*)=Exy[(f*(X) — Y)?] = E[¢’] = o° Notice: Optimal predictor

does not have zero error

As in HW1 solution, we can write the MSE of any function f as

R(f)=E

E
E

(f(X) =Y)"]

(f(X) = f1(X) + [(X) - Y)]

(F(X) = f1(X)* + (F1(X) = Y)* +2(f(X) = f(X))(f*(X) = Y)]
(f(X) = f1(X))]+E[(f(X) = Y)]

| J

R(f*) = o”

Bias — Variance Tradeoff: Derivation

F4(X)
* oy N/\/\é
V=Ff(X)+e e~N(0,0°) TR

o0,

Regression:

v

R(f*)=Exy[(f*(X) — Y)?] = E[¢’] = o° Notice: Optimal predictor
does not have zero error

Now f,,(X), and hence R(f, (X)), is random as it depends on training data

Ep [R(Fn)] —0°=Ex.v. 0, [(fn(X) —f*(X))?] Dn - training data of size n
= Ex,v,0, |(Ffa(X) = Ep, [fn(X)] 4 Ep,[fn(X)] = *(X))?]

= Ex.v.p, | (Fa(X) = Ep,[fn(X)D)? + (Ep, [Fn(X)] = f*(X))]
+2(fn(X) = Ep, [Fn (XD (Ep, [fn(X)] = f*(X))]
= Ex.v.p, [(Ja(X) = Ep, [fnCODZ|4+Ex,v. 0, [(Ep, [Fn(X)] - f*(X))?]

+Ex, v [2(Ep, fnCOHA=TED, [fn(X)]) Bp, [Fn(X)] —f*(X))]
0

Bias — Variance Tradeoff: Derivation

F4(X)
* oy N/\/\é
V=Ff(X)+e e~N(0,0°) TR

o0,

Regression:

v
R(f*)=Exy[(f*(X) — Y)?] = E[¢’] = o° Notice: Optimal predictor
does not have zero error

Now f,,(X), and hence R(f, (X)), is random as it depends on training data

Ep [R(Fn)] —0°=Ex.v. 0, [(fn(X) —f*(X))?] Dn - training data of size n
= Ex,v,0, |(Ffa(X) = Ep, [fn(X)] 4 Ep,[fn(X)] = *(X))?]

= Ex,v,p, [(fn(X) = Epy[fn(OD? + B, [fn(X)] - f(X))*

]
+2(Fn(X) = Epy [fn (X)) (B, [Fn(X)] = f*(X))]

= Ex.v.p, [(Ja(X) = Ep, [fnCODZ|4+Ex,v. 0, [(Ep, [Fn(X)] - [*(X))?]
]) | |
f I

Variance Bias?

Model Selection

Setup:
Model Classes {Fx}xcA of increasing complexity F1 < Fo < ...
We can select the right complexity model in a data-driven/adaptive way:
1 Hold-out
1 Cross-validation
d Complexity Regularization

O Information Criteria - AIC, BIC, Minimum Description Length (MDL)

Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold - out procedure:
n data points available D = {X;, Y},

1) Splitinto two sets: Training dataset ~ Validation dataset NOT ftest
Dy = {X;.Y;}™™, Dy = {X,,Y;}" Data !l

i=m-+1

2) Use D, for training a predictor from each model class:

fr=arg][gifnA Ry(f) AEA

> Evaluated on training dataset D,

Hold-out method

3) Use Dv to select the model class which has smallest empirical error on D,

X = arg min Ry (f>
g min v ()

|—> Evaluated on validation dataset D,,

4) Hold-out predictor
=15

Intuition: Small error on one set of data will not imply small error on
a randomly sub-sampled second set of data

Ensures method is “stable”

Hold-out method

Drawbacks:

= May not have enough data to afford setting one subset aside for

getting a sense of generalization abilities
= Validation error may be misleading (bad estimate of generalization

error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-
sampling methods at the expense of more computation.

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and
rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

|:| training |:|validation

Run 1 = f1

Total number of examples

Run 2 = fo

Run K

Cross-validation

Leave-one-out (LOQ) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run
for n runs

|:| training |:|validation
Total number of examples

< >

Run 1 = f1

Run 2 = fo

Run K = fK

Cross-validation

Random subsampling

Randomly subsample a fixed fraction an (0< a <1) of the dataset for validation.
Form hold-out predictor with remaining data as training data.

Repeat K times

Final predictor is average/majority vote over the K hold-out estimates.

|:| training |:|validation
Total number of examples

< >

Run 1 = f1

Run 2 — f2

Run K = fk

Estimating generalization error

AN

Generalization error R(f)
Hold-out = 1-fold: Error estimate = Ev(fT)

1 &
K-fold/LOO/random Error estimate = e > Ry (fr,)
sub-sampling: k=1

Example: Leave-one-out Cross-validation error for kNN

+ + — —

+ + — —

Estimating generalization error

AN

Generalization error R(f)
Hold-out = 1-fold: Error estimate = Ev(fT)

K
K-fold/LOO/random Error estimate = % Z Rvk(ka
sub-sampling: k=1

We want to estimate the error of a predictor l] training l] validation

based on n data points. Total number of examples

. . . < >
If K is large (close to n), bias of error estimate
is small since each training set has close to n Run 1
data points.
Run 2

However, variance of error estimate is high since
each validation set has fewer data points and

}A%vk might deviate a lot from the mean.

Run K

Practical Issues in Cross-validation

How to decide the values for Kand « ?

= largeK
+ The bias of the error estimate will be small
- The variance of the error estimate will be large (few validation pts)
- The computational time will be very large as well (many experiments)

= Small K
+ The # experiments and, therefore, computation time are reduced
+ The variance of the error estimate will be small (many validation pts)
- The bias of the error estimate will be large

Common choice: K=10, a=0.1 ©

Occam’s Razor

William of Ockham (1285-1349) Principle of
Parsimony:

“One should not increase, beyond what is

necessary, the number of entities required to
explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

* Prior information (bias)
* |Information Criterion (MDL, AIC, BIC)

Importance of Domain knowledge

f(@)

Distribution of photon arrivals
P Compton Gamma-Ray Observatory Burst

and Transient Source Experiment (BATSE)

Complexity Regularization

Penalize complex models using prior knowledge.
fn = arg 1;2}_} {Rn(f) + ('(f>}

Cost of model
(log prior)

Bayesian viewpoint:
prior probability of f, p(f) = e~)
cost is small if fis highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F
= uniform prior on f € F, zero probability for other predictors

g A
In argfrg}pL n(f)

Complexity Regularization

Penalize complex models using prior knowledge.
fo = argmin {ﬁn(f) + C‘(f)}
feF
Cost of model
(log prior)

Examples: MAP estimators
Regularized Linear Regression - Ridge Regression, Lasso

Ovap = arg maxlog p(D|0) +-1og p(6)

> (i = Xi9)2 N1l

Bumap = arg min
I—> Penalize models based

1—=1
on some norm of

How to choose tuning parameter A? Cross-validation regression coefficients

Information Criteria — AIC, BIC

Penalize complex models based on their information content.
Jfn = argmin {Rn(f) + ('(f)}
feF

bits needed to describe f
(description length)

AIC (Akiake IC) C(f) = # parameters

Allows # parameters to be infinite as # training data n become large

BIC (Bayesian IC) C(f) = # parameters * log n

Penalizes complex models more heavily — limits complexity of models
as # training data n become large

Summary

True and Empirical Risk
Over-fitting
Approx err vs Estimation err, Bias vs Variance tradeoff

Model Selection, Estimating Generalization Error

= Hold-out
= K-fold cross-validation
= Complexity Regularization

= |Information Criteria — AIC, BIC

