
10-704 Information Processing and Learning Fall 2016

Homework 1
Due: Wednesday, September 28, 2016

Notes: For positive integers k, [k] := {1, . . . , k} denotes the set of the first k positive integers.
When X ∼ p and Y ∼ q are random variables over the same sample space, D(X||Y ), D(X||q), and
D(p||Y ) should all be read as D(p||q). The homework is out of 60 points.

1. Warm-up Problems

(a) (15 points) Two teams A and B play a best-of-five series that terminates as soon as one
of the teams wins three games. Let X be the random variable representing the outcome
of the series, written as a string of who won the individual games (e.g., possible values
of X are AAA, BAAA, ABABB, etc.) Let Y be the number of games played before the
series ends. Assuming that A and B are equally matched and the outcomes of different
games in the series are independent, calculate H(X), H(Y ), H(Y |X), H(X|Y ), and
I(X;Y ) (in bits). Let pA and qA be the distributions of X and Y , respectively, given
that A wins the series. Calculate D(pA||X) and D(qA||Y ).

(b) (5 points) Suppose X, Y , and Z are each Bernoulli(1/2) and are pairwise independent
(i.e., I(X;Y ) = I(Y ;Z) = I(X;Z) = 0). What is the minimum possible value of
H(X,Y, Z)?

Solution:

(a) There are

• 2 ways the series can have length 3, each with probability 2−3.

• 2
(

3
1

)
= 6 ways the series can have length 4, each with probability 2−4.

• There are 2
(

4
2

)
= 12 ways the series can have length 5, each with probability 2−5.

Hence,

H(X) = 2 · 2−3 log2 23 + 6 · 2−4 log2 24 + 12 · 2−5 log2 25 =
33

8
,

and

H(Y ) =
1

4
log2 4 + 2 · 3

8
log2

8

3
= 1

2 + 3
4 log2

8
3 ≈ 1.56 .

Since Y is a (deterministic) function of X, H(Y |X) = 0 ,

I(X;Y ) = H(Y ) =
1

2
+

3

4
log2

8

3
≈ 1.56 ,

and

H(X|Y ) = H(X)−H(Y ) =
29

8
− 3

4
log2

8

3
≈ 2.56.

Since pA(x) is precisely twice P(X = x) wherever pA is supported, we have D(pA||X) =
EX′∼pA [log2(2)] = 1 . Finally, since Y is independent of whether A wins the series, qA

is identical to the distribution of Y , and so D(qA||Y ) = 0 .
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(b) Applying the Chain Rule (twice), the fact that Shannon entropy is nonnegative, and the
fact that H(Y |Z) = H(Y ) (since Y and Z are independent)

H(X,Y, Z) = H(X|Y,Z) +H(Y |Z) +H(Z)

≥ H(Y |Z) +H(Z) = H(Y ) +H(Z) = 2.

This is achieved, for example, if Z = X⊕Y (where ⊕ denotes the exclusive or operation),
since, in this case, any of {X,Y, Z} is a function of the remaining two.

2. General Data Processing

(a) (10 points) Suppose we have two distributions p1 and p2 on [k], and, for each i ∈
[k], a conditional distribution qi over [`]. Let q1(j) =

∑k
i=1 qi(j)p1(i) and q2(j) =∑k

i=1 qi(j)p2(i) denote the marginal distributions over [`] induced by p1 and p2, respec-
tively. Prove the General Data Processing Inequality

D(q1||q2) ≤ D(p1||p2). (1)

Hint: Use the log-sum inequality, which states that, for all non-negative sequences
a1, . . . , an and b1, . . . , bn, letting a =

∑n
i=1 ai and b =

∑n
i=1 bi,

n∑
i=1

ai log
ai
bi
≥ a log

a

b
.

(b) As special cases of (1), show:

i. (5 points) For random variables X and Y taking values in [k] and function f with
domain [k],

D(f(X)||f(Y )) ≤ D(X||Y ) and H(f(X)) ≤ H(X).

ii. (5 points) The Data Processing Inequality from class: for a Markov chain X 7→
Y 7→ Z, I(X;Z) ≤ I(X;Y ).

Solution:

(a) For each i ∈ [k] and j ∈ [`], define aj,i := qi(j)p1(i) and bj,i := qi(j)p2(i). Note that

q1(j) =
∑k

i=1 aj,i, and q2(j) =
∑k

i=1 bj,i. Hence, applying the log-sum inequality (to
each term of the summation),

D (q1||q2) =
∑̀
j=1

q1(j) log
q1(j)

q2(j)
≤
∑̀
j=1

k∑
i=1

aj,i log
aj,i
bj,i

=

k∑
i=1

∑̀
j=1

qi(j)p1(i) log
p1(i)

p2(i)

=

k∑
i=1

p1(i) log
p1(i)

p2(i)
= D (p1||p2) ,

since, for each i ∈ [k],
∑`

j=1 qi(j) = 1.
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(b) i. The inequality
D(f(X)||f(Y )) ≤ D(X||Y ) (2)

is precisely (1) in the case that qi is a delta function qi(j) = 1{j=f(i)} at f(i).
Since H(f(X)|X) = 0,

H(f(X)) = I(X; f(X)) = D(P(X,f(X))||PXPf(X)).

Applying (2) with the bivariate function (x, y) 7→ (x, f(y)) gives

H(f(X)) = D(P(X,f(X))||PXPf(X)) ≤ D(P(X,X)||PXPX) = I(X;X) = H(X).

ii. Recall that, in general, I(X;Y ) is the expected divergence in the distribution of Y
when given X. Applying the law of total probability, the fact that PZ|X,Y = PZ|Y ,
and inequality (1),

I(X;Z) = EX
[
D
(
PZ|X

∥∥PZ)] = EX
[
D

(∫
Y
PZ|X,Y PY |X

∥∥∥∥∫
Y
PZ|Y PY

)]
= EX

[
D

(∫
Y
PZ|Y PY |X

∥∥∥∥∫
Y
PZ|Y PY

)]
≤ EX

[
D
(
PY |X

∥∥PY )] = I(X;Y ).

3. Plug-in estimator for differential entropy

This problem derives convergence rates for an estimator of the differential entropy H(p) =
−
∫
X p(x) log p(x) dx of a probability density p, given n IID samples X1, . . . , Xn ∼ p. To

simplify matters, we will make the following assumptions:

i) The sample space X = [0, 1]D is the D-dimensional unit cube.

ii) We know positive lower and upper bounds

0 < κ1 ≤ inf
x∈X

p(x) ≤ sup
x∈X

p(x) ≤ κ2 <∞

on the true density p.

The estimator in question is a plug-in estimator based on a truncated kernel density estimate
(KDE). Specifically, the estimate Ĥh is given by given by

Ĥh = H(p̂h) = −
∫
X
p̂h(x) log p̂h(x) dx, (3)

where, for some bandwidth h > 0 and kernel K : RD → R with
∫
RD K(u) du = 1,

p̂h(x) = min

{
κ2,max

{
κ1,

1

nhd

n∑
i=1

K

(
x−Xi

h

)}}
, (4)

is a truncated KDE of p.
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You may take for granted the following facts about the integrated squared bias and variance
of the truncated KDE: 1 there exist constants C0, C1 > 0 such that, for all h > 0,∫

X
(E [p̂h(x)]− p(x))2 dx ≤ C0h

2β (5)

and ∫
X
V [p̂h(x)] dx ≤ C1

nhD
. (6)

Here, the “Hölder” parameter β > 0 is a measure of smoothness of the probability density p.
Larger β indicates smoother p, and hence less smoothing bias. The standard decomposition
of mean-squared error into bias and variance gives∫

X
E
[
(p̂h(x)− p(x))2

]
=

∫
X

(E [p̂h(x)]− p(x))2 + V [p̂h(x)] dx ≤ C0h
2β +

C1

nhD
.

Optimizing over h gives the rate h � n
− 1

2β+D and plugging this back in gives the integrated
MSE rate ∫

X
E
[
(p̂h(x)− p(x))2

]
� n−

2β
2β+D .

In this problem, we will derive similar bounds for the plug-in entropy estimator, and study
its optimal bandwidth and MSE.

(a) (5 points) Prove the bias bound∣∣∣E [Ĥh

]
−H

∣∣∣ ≤ CB (hβ + h2β +
1

nhD

)
,

for some CB depending only on C0, C1, κ1, κ2, and D. (Hint: Along with inequalities
(5) and (6), a second-order Taylor expansion and Jensen’s inequality may be useful.)

(b) (5 points) This part will use McDiarmid’s inequality:

Theorem 1. (McDiarmid’s Inequality): Suppose we have n independent random
variables X1, . . . , Xn taking values in a set Ω and a function f : Ω → R such that, for
some constants c1, . . . , cn,

sup
x1,...,xn,y∈Ω

|f(x1, . . . , xn)− f(x1, . . . , xi−1, y, xi+1, . . . , xn)| ≤ ci, for each i ∈ [n].

Then, McDiarmid’s inequality states that, for any ε > 0,

P [|f(X)− E [f(X)]| > ε] ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
.

1These results can be found in any text on nonparametric estimation, such as Tsybakov [2008], Section 1.2.
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Essentially, if a function depends on many independent random variables, but not too
much on any one of them, McDiarmid’s inequality tells us that the function’s distribution
is is tightly concentrated around its expectation.

Use McDiarmid’s inequality to derive the exponential concentration bound

P
[∣∣∣Ĥh − E

[
Ĥh

]∣∣∣ > ε
]
≤ 2 exp

(
−CEε2n

)
, (7)

for the plug-in estimator Ĥh, for some CE depending only on D, K, κ1, and κ2. (Hint:
The mean value theorem will be useful here.)

(c) (5 points) Use (7) to prove the variance bound V
[
Ĥ
]
≤ CV

n , with CV depending

only on D, K, κ1, and κ2. (Hint: Recall that, for a non-negative random variable X,
E [X] =

∫∞
0 P [X > x] dx.)

(d) (5 points) Combine the bias and variance bounds to derive a bound on the mean

squared error (MSE) E
[(
Ĥh −H

)2
]

of Ĥh. Optimize this over h. What are the optimal

bandwidth and MSE rates (asymptotically, as n → ∞)? How do these compare to
the optimal bandwidth and MSE rates for kernel density estimation (smaller, same, or
larger)?

Note: When initially writing this problem, I had omitted the explicit assumption that there
exists a known upper bound supx∈X p(x) ≤ κ2 < ∞. The existence of such a κ2 uniformly
over the class of distributions under consideration actually follows from assuming Hölder
continuity. You were not required to show this, but, for completeness, we show this here in
the case that p is β-Hölder continuous with constant L, for some β ∈ (0, 1].

Proof: Since p is continuous and X is compact, x∗ := argmaxx∈X p(x) exists. Let u :=(
p(x∗)

2L

)1/β
, so that, by the Hölder condition, for all x ∈ B(x, u) ∩X , 2 p(x) ≥ p(x∗)/2. Since

p is a probability density,

1 ≥
∫
B(x∗,u)∩X

p(x) dx ≥
∫
B(x∗,u)∩X

p(x∗)

2
≥ µ(B(0, u))

2D
· p(x

∗)

2
,

(the 2D term is due the fact that at least one orthant of B(x, u) must lie entirely within X ).
Since u increases with p(x∗), the right side clearly increases unboundedly with p(x∗), and so
the latter must be bounded.

Since we need Hölder continuity to bound the bias of p̂ anyway, the existence of κ2 is a
very mild assumption. The existence of κ1 is a much stronger assumption, but can only be
weakened slightly.

Solution: (Based on Liu et al. [2012])

(a) Define g : (κ1, κ2)→ R by g(z) = z log z. Define constants

G1 := sup
z∈[κ1,κ2]

∣∣g′(z)∣∣ = max {|1 + log(κ1)|, |1 + log(κ2)}

2Here, B(x, u) denotes the ball of radius u centered at x, in the same metric as the Hölder condition, and µ denotes
its Lebesgue measure.
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and

G2 := sup
z∈[κ1,κ2]

|g′′(z)| = 1

κ1
.

Note that, for any x, y ∈ [κ1, κ2], there exists z ∈ [x, y] ∪ [y, x] ⊆ [κ1, κ2] such that

g(x)− g(y) = g′(y)(y − x) +
g′′(z)

2
(y − x)2.

∣∣∣E [Ĥ]−H∣∣∣ ≤ ∣∣∣∣E [∫
X
g (p̂(x))− g(p(x)) dx

]∣∣∣∣
≤
∣∣∣∣E [∫

X
g′(p(x))(p(x)− p̂(x)) +

g′′(ζ(x))

2
(p(x)− p̂(x))2 dx

]∣∣∣∣
≤
∫
X
G1 |p(x)− E [p̂(x)]|+ G2

2
E
[
(p(x)− p̂(x))2

]
dx

Applying Jensen’s inequality (since X has Lebesgue measure 1),∣∣∣E [Ĥ]−H∣∣∣ ≤ G1

√∫
X

(p(x)− E [p̂(x)])2 dx+
G2

2

∫
X
E
[
(p(x)− p̂(x))2

]
dx

≤ G1

√
C0h2β +

G2

2

(
C0h

2β +
C1

nhD

)
≤ CB

(
hβ + h2β +

1

nhD

)
,

where the second inequality is by the given bounds on the integrated squared bias and
integrated MSE of the kernel density estimator, and

CB := max

{
G1

√
C0,

G2

2
max {C0, C1}

}
. �

(b) For sake of applying McDiarmid’s inequality, let p̂′ denote the KDE p̂ when the ith sample
Xi is replaced by an independent sample X ′i, and let Ĥ ′ denote the corresponding plug-in
estimate. By the mean value theorem, for any x, y > 0,

|x log x− y log y| ≤ (1 + max{| log x|, | log y|}) |x− y|.

Hence, letting κ := 1 + max{| log κ1|, | log κ2|}, since both p̂ and p̂(i) lie in [κ1, κ2],∣∣∣Ĥ − Ĥ ′∣∣∣ =

∣∣∣∣∫
X
p̂(x) log p̂(x)− p̂′(x) log p̂′(x) dx

∣∣∣∣
≤
∫
X

∣∣p̂(x) log p̂(x)− p̂′(x) log p̂′(x)
∣∣ dx ≤ κ∫

X
|p̂(x)− p̂′(x)| dx.

Note that, since p̂ and p̂′ differ in only one sample, almost all terms in p− p̂ cancel out:

|p̂(x)− p̂′(x)| = 1

nhD

∣∣∣∣K (x−Xi

h

)
−K

(
x−X ′i
h

)∣∣∣∣
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Now, applying the change of variables u = x−Xi
h , since the Jacobian of this transforma-

tion has determinant |Jux| = |hID| = hD,∣∣∣Ĥ − Ĥ ′∣∣∣ ≤ κ

nhD

∫
X

∣∣∣∣K (x−Xi

h

)
−K

(
x−X ′i
h

)∣∣∣∣ dx
≤ 2

κ

nhD

∫
X

∣∣∣∣K (x−Xi

h

)∣∣∣∣ dx
≤ 2

κ

n

∫
X
|K (u)| du = 2

κ

n
‖K‖1.

Hence, by McDiarmid’s inequality, for CE = 1
2κ2‖K‖21

,

P
[∣∣∣Ĥ − E

[
Ĥ
]∣∣∣] ≤ 2 exp

(
− 2ε2∑n

i=1

(
2κn‖K‖1

)2
)

= 2 exp
(
−CEnε2

)
. �

(c) By the previous part, for CV := 2
CE

,

V
[
Ĥ
]

= E
[(
Ĥ − E

[
Ĥ
])2
]

=

∫ ∞
0

P
[(
Ĥ − E

[
Ĥ
])2

> ε

]
dε

=

∫ ∞
0

P
[∣∣∣Ĥ − E

[
Ĥ
]∣∣∣ > √ε] dε

≤ 2

∫ ∞
0

exp (−CEεn) dε =
2

CEn
=
CV
n
. �

(d) Combining parts (a) and (c) via the usual bias-variance decomposition of MSE gives

E
[(
Ĥ −H

)2
]

= E2
[
Ĥ −H

]
+ V

[
Ĥ
]

≤ C2
B

(
hβ + h2β +

1

nhD

)
+
CV
n
. (8)

Note that the variance does not depend on h, and so we can just optimize the bias
bound over h. Also, since h → 0 as n → ∞, the h2β term is negligible; we replace it
with a constant factor of 2. Hence, since the bias bound is convex in h, at the optimal
bandwidth h∗, we have

0 =
d

dh
hβ + n−1h−D

∣∣∣∣
h=h∗

= βhβ−1
∗ −Dn−1h

−(D+1)
∗ = hβ+D

∗ − D

β
n−1,

and so h∗ � n−
1

β+D . Plugging this into (8) gives

E
[(
Ĥ −H

)2
]
�
(
n
− β
β+D

)2

+ n−1 = n
−min

{
1, 2β
β+D

}
.

For any values of β and D, this rate is faster than the n
− 2β

2β+D optimal rate for density

estimation, and uses a smaller bandwidth than h � n−
1

2β+D . �
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