Homework 2 Due: Friday, October 28, 2016

Notes: For positive integers k, $[k] := \{1, \ldots, k\}$ denotes the set of the first k positive integers. When $X \sim p$ and $Y \sim q$ are random variables over the same sample space, $D(X||Y)$, $D(X||q)$, and

 $D(p||Y)$ should all be read as $D(p||q)$. The homework is out of 75 points – 5 points per part.

1. Maximum Entropy of Independent Bernoulli Sums

In this problem, we will show that the binomial and (optionally) Poisson distributions are maximum entropy (MaxEnt) distributions over an appropriate class $\mathcal P$ of distributions, and derive several useful properties of KL divergence along the way.

For any positive integer n and $p \in [0, 1]$, let Binomial (n, p) denote the binomial distribution (the sum of n IID Bernoulli events of probability p), which has density function

Binomial_{n,p}
$$
(k) = {n \choose k} p^k (1-p)^{1-k}.
$$

For $\lambda \geq 0$, let $\Pi(\lambda)$ denote the mean- λ Poisson distribution, which has density function

$$
Poisson_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad \forall k \in \mathbb{N} \cup \{0\}.
$$

The class P_{λ} of distributions is that of sums $S_n := \sum_{i=1}^n X_i$ of n independent (but not necessarily identically distributed) binary variables $\{X_i\}_{i=1}^n$ constrained such that $\mathbb{E}[S_n] = \lambda$, for some $\lambda \in [0, n]$. Note that any $p \in \mathcal{P}_{\lambda}$ can be parametrized by $(p_1, \ldots, p_n) \in [0, 1]^n$, with $\sum_{i=1}^n p_i = \lambda$. We will show that the Binomial case $p_1 = \cdots = p_n = \frac{\lambda}{n}$ $\frac{\lambda}{n}$ is the MaxEnt distribution over \mathcal{P}_{λ} , and that the Poisson distribution is the limit as $n \to \infty$.

- (a) Derive the maximum likelihood estimate of λ under the assumption that you observe n IID samples X_1, \ldots, X_n from a Poisson distribution.
- (b) Define $D(X) := \min_{\lambda \geq 0} D(X||\Pi(\lambda))$. Derive a closed form for $D(X)$ in terms of X.¹
- (c) Show that the KL divergence $D(p||q)$ is convex in p.
- (d) Let

$$
\mathcal{P}_{\lambda}(p_3, ..., p_n) = \{q \in \mathcal{P}_{\lambda} : q_3 = p_3, ..., q_n = p_n, \}
$$

$$
= \left\{ (x_1, x_2, p_3, ..., p_n) : x_1 + x_2 = \lambda - \sum_{i=3}^n p_i \right\}
$$

denote the subspace of \mathcal{P}_{λ} with all but two coordinates fixed. Show that $H(S_n)$ is strictly concave on $\mathcal{P}_{\lambda}(p_3,\ldots,p_n)$. (Hint: Use parts (b) and (c) to reduce this to showing $\mathbb{E}[\log(S_n!)]$ is strictly concave on $\mathcal{P}_{\lambda}(p_3,\ldots,p_n)$. Then, since

$$
\mathbb{E}[\log(S_n!)]=\mathbb{E}[\mathbb{E}[\log(S_n!)|X_3,\ldots,X_n]],
$$

 ${}^{1}X$ may have any distribution over $\{0, 1, 2 \ldots\}$, but you may assume any necessary functionals of X are finite.

which is a linear functional of $\mathbb{E}[\log(S_n!) | X_3, \ldots, X_n]$, show that $\mathbb{E}[\log(S_n!) | X_3, \ldots, X_n]$ is strictly concave on $\mathcal{P}_{\lambda}(p_3,\ldots,p_n)$, for any values of X_3,\ldots,X_n .

- (e) Use part (d) to show that Binomial $(n, \lambda/n)$ is the unique MaxEnt distribution over \mathcal{P} .
- (f) Given independent random variables X and Y taking values on $\mathbb N$, show that

$$
D(X+Y) \le D(X) + D(Y). \tag{1}
$$

(Hint: Use the General Data Processing Inequality from Homework 1 and the fact that the sum of two Poisson-distributed variables with means λ_1 and λ_2 is itself Poissondistributed with mean $\lambda_1 + \lambda_2$.

- (g) Show that $D\left(\text{Binomial}\left(n, \frac{\lambda}{n}\right)\right) \to 0$ as $n \to \infty$. This is (a fairly strong form of) the "Law of Rare Events" (a.k.a. the "Poisson Limit Theorem"), which states that the frequency of a large number of unlikely events is approximately Poisson-distributed and justifies many applications of the Poisson distribution. (*Hint: Show* $D(X_i) \leq p_i^2$ and apply (1).)
- (h) (This part is optional.) Show that $H(\Pi(\lambda)) = \lim_{n \to \infty} H(B(n, \lambda/n))$. (Hint: Use the equivalence

$$
H(p) + D(p||q) = \mathop{\mathbb{E}}_{X \sim p} [\log q(x)],
$$

discussed in Lecture 1. Note that one step of this proof requires switching a limit and an infinite summation. If you are not familiar with the dominated convergence theorem, you may wish to take this step for granted.)

Solution: (Based on Harremoës [2001], though part (d) is simplified.)

(a) For any $\lambda \in [0, \infty)$, the log-likelihood function is

$$
\ell(X_1^n|\lambda) = \sum_{i=1}^n \log\left(\frac{\lambda^{X_i}}{X_i!}e^{-\lambda}\right)
$$

=
$$
\sum_{i=1}^n X_i \log \lambda - \log(X_i!) - \lambda = n\bar{X} \log \lambda - n\lambda + \sum_{i=1}^n \log(X_i!)
$$

for $\bar{X} = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^{n} X_1$. This is clearly concave and smooth in λ , so that, at the MLE $\widehat{\lambda}_{MLE} = \operatorname{argmax}_{\lambda \in [0,\infty)} \ell(X_1^n|\lambda)$, we have,

$$
0 = \frac{d}{d\lambda} \ell(X_1^n|\lambda)|_{\lambda = \widehat{\lambda}_{MLE}} = \frac{n\bar{X}}{\widehat{\lambda}_{MLE}} - n.
$$

Hence $\widehat{\lambda}_{MLE} = \overline{X}$ is the empirical mean of X.

(b) Hence, we can plug part (a) into the definition of D , giving First calculate

$$
D(X||\Pi(\lambda)) = \sum_{j=0}^{\infty} p_j \log \left(\frac{p_j}{\frac{\lambda^j}{j!}e^{-\lambda}}\right)
$$

= $\lambda + \sum_{j=0}^{\infty} p_j \log \left(\frac{j!}{\lambda^j}\right) - H(X)$
= $\lambda - \mathbb{E}[X] \log \lambda + \mathbb{E} [\log X!] - H(X)$

Recalling that the MLE minimizes KL divergence gives, by part (a), that

$$
D(X) = D(X||\Pi(\mathbb{E}[X])) = \mathbb{E}[X] - \mathbb{E}[X] \log \mathbb{E}[X] + \mathbb{E}[\log X!] - H(X).
$$

(c) Note that, for any $c > 0$, the function $f_c : [0, \infty) \to \mathbb{R}$ defined by $f_c(x) = x \log(\frac{x}{c})$ $\frac{x}{c}$) is convex (since $f''_c(x) = \frac{1}{x} \ge 0$). Thus, $\forall \alpha \in [0,1]$ and probability densities p_1, p_2, q on $\mathcal{X},$

$$
D(\alpha p_1 + (1 - \alpha)p_2||q) = \int_{\mathcal{X}} f_{q(x)}(\alpha p_1(x) + (1 - \alpha)p_2(x)) dx
$$

\n
$$
\leq \int_{\mathcal{X}} \alpha f_{q(x)}(p_1(x)) + (1 - \alpha)f_{q(x)}(p_2(x)) dx
$$

\n
$$
= \alpha D(p_1||q) + (1 - \alpha)D(p_2||q)
$$

(noting $\alpha p_1(x) + (1 - \alpha)p_2(x) = 0$ implies $p_1(x) = 0$ or $p_2(x) = 0$, so that the inequality applied to $f_{q(x)}$ holds trivially when $q(x) = 0$.

(d) By part (b) and the fact that $\mathbb{E}[S_n] = \lambda$,

$$
H(S_n) = \lambda - \lambda \log \lambda + \mathbb{E} [\log(S_n!)] - D(S_n || \Pi(\lambda)).
$$

Since λ is fixed and D is convex in its first argument, it remains only to show that $\mathbb{E} [\log(S_n!)]$ is concave on $\mathcal{P}_{\lambda}(p_3,\ldots,p_n)$.

$$
\mathbb{E} [\log S_n!] = \mathbb{E} \left[\mathbb{E} \left[\log \left(X_1 + X_2 + \sum_{i=3}^n X_i \right)! | X_3, \dots, X_n \right] \right]
$$

Since this is linear in

$$
\mathbb{E}\left[\log\left(X_1+X_2+\sum_{i=3}^n X_i\right)! \middle| X_3,\ldots,X_n\right],\tag{2}
$$

it suffices to show that, for any fixed values of X_3, \ldots, X_n , (2) is concave in p_1 and p_2 . Let $T := \sum_{i=3}^n X_i$, and let $r := \lambda - \sum_{i=3}^n p_i$. Using the facts that X_1, X_2 , and T are all independent, $X_1 + X_2 \in \{0, 1, 2\}$, and $p_1 = r - p_2$,

$$
\mathbb{E}\left[\log\left(X_1 + X_2 + \sum_{i=3}^n X_i\right)! | X_3, \dots, X_n\right]
$$
\n
$$
= \mathbb{E}\left[\log\left(X_1 + X_2 + T\right)! | T\right]
$$
\n
$$
= (1 - p_1)(1 - p_2)\log(T!) + (p_1(1 - p_2) + (1 - p_1)p_2)\log((T + 1)!) + p_1p_2\log((T + 2)!)
$$
\n
$$
= \log T! + (p_1 + p_2 - p_1p_2)\log(T + 1) + p_1p_2\left(\log(T + 2)\right)
$$
\n
$$
= \log T! + (\lambda - r)\log(T + 1) + p_1(r - p_1)\left(\log(T + 2) - \log(T + 1)\right)
$$

The above expression is a quadratic polynomial in p_1 , with a negative quadratic coefficient, and is therefore concave. Since, clearly, $p_1(r - p_1)$ is concave and $\log(T + 2)$ $log(T + 1)$, the above expression is convex in p_1 and p_2 , along the line $p_1 + p_2 = r$.

(e) Since $P_{\lambda} \subseteq \mathbb{R}^n$ is compact and H is continuous, $p^* \in \text{argmax}_{p \in \mathcal{P}_{\lambda}} H(p)$ exists. Suppose, for sake of contradiction, that, for some $i, j \in [n]$, $p_i^* \neq p_j^*$. Define $q^* \in \mathcal{P}_\lambda$ by

$$
q_{\ell}^* = \begin{cases} \frac{p_i^* + p_j^*}{2} & \text{: } \ell \in \{i, j\} \\ p_{\ell}^* & \text{: otherwise} \end{cases}
$$

.

By part (e) and symmetry, $H(q^*) > H(p^*)$, which is a contradiction.

(f) Let $\lambda_X := \operatorname{argmin}_{\lambda>0} D(X||\Pi(\lambda))$ and $\lambda_Y := \operatorname{argmin}_{\lambda>0} D(Y||\Pi(\lambda))$. Using the fact that X and Y are independent followed by the General Data Processing Inequality applied the function $(x, y) \mapsto x + y$ and the fact that $\Pi(\lambda_X) + \Pi(\lambda_Y) = \Pi(\lambda_X + \lambda_Y)$,

$$
D(X) + D(Y) = D((X, Y)||(\Pi(\lambda_X), \Pi(\lambda_Y)))
$$

\n
$$
\leq D(X + Y||\Pi(\lambda_X + \lambda_Y)) \leq D(X + Y).
$$

(g) Using the inequality $\log(1-x) \leq -x$,

$$
D(X_i) = (1 - p_i) \ln(1 - p_i) + p_i \le (p_i - 1)p_i + p_i = p_i^2.
$$

Thus, for the binomial case $p_1 = \cdots = p_n = \lambda/n$, by (1),

$$
D(S_n) \le \sum_{i=1}^n p_i^2 = \frac{\lambda^2}{n} \to 0 \quad \text{as } n \to \infty.
$$

(h) For convenience, let $p_n = Binomial(n, \lambda/n)$ and $q = \Pi(\lambda)$. By parts (b) and (g), as $n \to \infty$, $D(p_n) = D(p_n, q) \to 0$. Thus,

$$
\lim_{n \to \infty} H(p_n) = \lim_{n \to \infty} \mathop{\mathbb{E}}_{X \sim p_n} [\log q(x)] - D(p_n || q)
$$

$$
= \lim_{n \to \infty} \mathop{\mathbb{E}}_{X \sim p_n} [\log q(x)]
$$

$$
= \lim_{n \to \infty} \sum_{i=0}^{\infty} p_n(i) \log q(i).
$$
(3)

Note that

$$
p_n(i) = {n \choose i} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}
$$

$$
\leq {n \choose i} \left(\frac{\lambda}{n}\right)^i = \frac{n!}{i!(n-i)!} \left(\frac{\lambda}{n}\right)^i \leq \frac{\lambda^i}{i!} = q(i)e^{\lambda}
$$

and one can easily calculate

$$
\sum_{i=0}^{\infty} q(i)e^{\lambda} \log q(i) = e^{\lambda} H(q) < \infty.
$$

Hence, by the dominated convergence theorem, the limit and infinite series in (3) commute. Since, as a particular consequence of part (g), $p_n \to q$ pointwise, this gives

$$
\lim_{n \to \infty} H(p_n) = \sum_{i=0}^{\infty} \lim_{n \to \infty} p_n(i) \log q(i) = \sum_{i=0}^{\infty} q(i) \log q(i) = H(q).
$$

2. Wavelet Denoising with CRM

In this problem, we will analyze the convergence rate of a wavelet-based denoising estimator.

Haar wavelets and quantization: Recall that Haar wavelets over $\mathcal{X} := [0, 1)$ are piecewise constant functions $\psi_{j,k}: \mathcal{X} \to \{-2^{j/2}, 0, 2^{j/2}\}\$ such that

$$
\psi_{j,k}(x) = 2^{j/2} \left(1_{[k2^{-j}, (k+1/2)2^{-j})} - 1_{[(k+1/2)2^{-j}, (k+1)2^{-j})} \right),
$$

for all $j \in \mathbb{N} \cup \{0\}, k \in \{0, \ldots, 2^{j}-1\}, x \in \mathcal{X}$. Since Haar wavelets for a basis for $L^{2}(\mathcal{X})$, for any $\ell \in \mathbb{N} \cup \{0\}$, if we define the projection

$$
f_{\ell} := \sum_{j=0}^{\ell} \sum_{k=0}^{2^j-1} \langle \psi_{j,k}, f \rangle,
$$

of f onto the first $\ell + 1$ scales of the Haar basis, then $f_{\ell} \to f$ as $\ell \to \infty$. To encode the projection f_{ℓ} , we also need to quantize the coefficients. Quantized projections lie in the set

$$
Q_{\ell,\varepsilon} := \left\{ \sum_{j=0}^{\ell} \sum_{k=0}^{2^j-1} a_{j,k} \psi_{j,k} \in L^2(\mathcal{X}) : a_{j,k} = 2b_{j,k}\varepsilon, \text{ for some integer } b_{j,k} \right\},\,
$$

so that their wavelet coefficients are multiples of ε . Our quantized projection of f is then

$$
f_{\ell,\varepsilon}:=\operatornamewithlimits{argmin}_{g\in Q_{\ell,\varepsilon}}\|f-g\|_2.
$$

Thus, $f_{\ell,\varepsilon}$ is the best (in L^2 distance) representation of f in terms of Haar wavelets of scale at most ℓ and coefficient precision ε .

CRM Denoising: We will assume the true function f lies in the class $\mathcal{F}_{s,M} \subseteq L^2(\mathcal{X})$ of piecewise constant functions with at most s discontinuities and bounded L^{∞} norm $||f||_{\infty} =$ $\sup_{x \in \mathcal{X}} |f(x)| \leq M$. We observe n noisy IID pairs $\{(X_i, Y_i)\}_{i=1}^n$, where each $X_1, \ldots, X_n \sim$ $U(\mathcal{X})$ is uniformly distributed and, for $\varepsilon_1,\ldots,\varepsilon_n \sim \mathcal{N}(0,\sigma^2), Y_i = f(X_i) + \varepsilon_i$.

For $\delta \in (0,1)$, the complexity-penalized empirical risk minimizing (CRM) estimator ² is

$$
\widehat{f}_{\ell, \varepsilon, \delta} := \operatornamewithlimits{argmin}_{g_{\ell, \varepsilon} \in Q_{\ell, \varepsilon}} \left[\|g_{\ell, \varepsilon} - f\|_2^2 + \frac{c(g_{\ell, \varepsilon}) - \ln \delta}{n} \right],
$$

where $c(g_{\ell,\varepsilon})$ denotes the number of bits required to encode $g_{\ell,\varepsilon}$. In class, we derived the following excess risk bound for CRM estimators:

$$
R\left(\widehat{f}_{\ell,\varepsilon,\delta}\right) - R^* = \|\widehat{f}_{\ell,\varepsilon,\delta} - f\|_2^2 \le \inf_g \left[\|g_{\ell,\varepsilon} - f\|_2^2 + \frac{c\left(g_{\ell,\varepsilon}\right) - \ln \delta}{n} \right] + \delta. \tag{4}
$$

In this problem, we will analyze the terms of (4) to derive a convergence rate bound in terms of the complexity s of f and the sample size n .

²Recall that $\widehat{f}_{\ell,\varepsilon,\delta}$ can be easily computed by hard-thresholding.

- (a) Show that the projections f_ℓ and $f_{\ell,\varepsilon}$ can each have at most $C_0s\ell+1$ nonzero coefficients, for some constant C_0 .
- (b) Bound the approximation errors $||f f_{\ell}||_2^2$ and $||f f_{\ell, \varepsilon}||_2^2$.
- (c) How many bits $c(f)$ are required to encode $f_{\ell,\varepsilon}$ (for known s, M, ℓ , and ε)?
- (d) By choosing $\varepsilon > 0$, $\ell \in \mathbb{N}$, and $\delta > 0$ appropriately, use parts (b) and (c) with the bound(4) show 3

$$
\|\widehat{f} - f\|_2^2 \in O\left(\frac{s \log^2 n}{n}\right).
$$

Note that, up to log factors, this is a parametric rate with s parameters.

Solution:

(a) If f is constant over the support of some wavelet, then the projection of f onto that wavelet, as well as any child of that wavelet, is clearly 0. Since f changes values only at its (at most s) discontinuities, it is non-constant on the supports of at most s of the wavelets at any scale. Since f_ℓ includes projections onto only the top ℓ scales, it has at most $|s\ell + 1|$ non-zero coefficients (adding one for the projection onto $\psi_{0,0}$).

Since 0 is a multiple of ε , any non-zero coefficient in $f_{\ell,\varepsilon}$ corresponds to a non-zero coefficient of f_ℓ , and so, by part (a), at most $|s\ell + 1|$ coefficients of $f_{\ell,\varepsilon}$ are non-zero.

(b) Linear combinations of wavelets of scale at most ℓ can exactly fit f except on the at most s intervals of lengths $2^{-\ell}$ on which f is discontinuous. That is, the measure of the set $E \subseteq [0, 1]$ on which the wavelet approximation is not exactly equal to f is at most $s2^{-\ell}$. Since $||f||_{\infty} \leq M$, if the wavelet approximation is 0 whenever it is not exactly f, the error of the approximation for any $x \in E$ is at most M. Since the wavelet basis is orthonormal, f_ℓ as defined minimizes the error of approximating f by wavelets of scale at most ℓ , and thus, $||f - f_{\ell}||_2^2 \le M^2 s 2^{-\ell}$.

Note, for any j, k, $a \in \mathbb{R}$, if a_{ε} denotes a rounded to the nearest multiple of ε , then

$$
||a\psi_{j,k} - a_{\varepsilon}\psi_{j,k}||_2^2 = |a - a_{\varepsilon}|^2 (2^{j/2})^2 \cdot 2^{-j} \leq \varepsilon^2.
$$

(since $a\psi_{j,k}$ and $a_{\varepsilon}\psi_{j,k}$ disagree by at most $\varepsilon 2^{j/2}$ on an interval of length at most 2^{-j}). Thus, $|| f_{\ell} - (f_{\ell})_{\ell, \varepsilon} ||_2^2 \leq 2sl\varepsilon^2$, where k is the number of nonzero coefficients of f_{ℓ} . Using the definition of $f_{\ell,\varepsilon}$, the Pythagorean Theorem, and parts (a) and (b),

$$
||f - f_{\ell, \varepsilon}||_2^2 \le ||f - (f_{\ell})_{\ell, e}||_2^2 = ||f - f_{\ell}||_2^2 + ||f_{\ell} - (f_{\ell})_{\ell, e}||_2^2 \le \boxed{M^2 s 2^{-\ell} + 2s\ell\varepsilon^2}.
$$

(c) Since each coefficient of $f_{\ell,\varepsilon}$ has $2M/\varepsilon$ possible nonzero values, any given non-zero coefficient can be specified with at most $\log_2(2M/\varepsilon)$. Since there are at most $2s\ell$ nonzero coefficients, we can encode $f_{\ell,\varepsilon}$ using $|c(f_{\ell,\varepsilon}) \leq 2s\ell \log_2(2M/\varepsilon)|$ bits.

³Here, treat M as a constant.

(d) Since $f_{\ell,\varepsilon} \in Q_{\ell,\varepsilon}$, the CRM bound and parts (b) and (c) give

$$
\|\widehat{g} - \widehat{f}\|_2^2 \le \min_{g \in Q_{\ell,\varepsilon}} \left\{ \|g - \widehat{f}\|_2^2 + \frac{c(g) + \ln(1/\delta)}{n} \right\} + \delta
$$

\n
$$
\le \|\widehat{f}_{\ell,\varepsilon} - \widehat{f}\|_2^2 + \frac{c(f_{\ell,\varepsilon}^*) + \ln(1/\delta)}{n} + \delta
$$

\n
$$
\le M^2 s 2^{-\ell} + 2s \ell \varepsilon^2 + \frac{2s\ell \log_2(2M/\varepsilon) + \ln(1/\delta)}{n} + \delta
$$

\n
$$
\le \frac{s(2\log_2 n + M)}{n} + \frac{s\log_2^2(2Mn) + \ln n}{n} + \frac{1}{n} \in O\left(\frac{s\log^2 n}{n}\right),
$$

for $\varepsilon = n^{-1/2}, l = \log_2 n, \delta = 1/n$.

3. Universal Prediction with Exponential Weights

Fix a (potentially infinite) countable class of predictors \mathcal{F} . Recall that, in the universal prediction setting, at each time point $t \in \{1, ..., T\}$ up to a predetermined time horizon T, we see some data x_t and choose a predictor $f_t \in \mathcal{F}$, before then seeing a true label y_t and suffering loss $\ell\left(\widehat{f}_t(x_t), y_t\right) \in [0, 1]$. Since we are allowing, for example, adversarial sequences $\{(x_t, y_t)\}_{t=1}^T$, a randomized algorithm is needed to provide any guarantees. Given a learning rate $\eta > 0$ and prior π over F, the exponential weights algorithm proposes to draw f_t according to a distribution q_t defined such that $q_1 = \pi$ and each

$$
q_{t+1}(f) \propto q_t(f) \exp\left(-\eta \ell(f(x_t), y_t)\right).
$$

For each $f \in \mathcal{F}$ and $t \in [T]$, let

$$
L_t(f) := \sum_{\tau=1}^t \ell(f(x_\tau), y_\tau) \quad \text{and} \quad L_t(\widehat{f}) := \sum_{\tau=1}^t \ell\left(\widehat{f}_\tau(x_\tau), y_\tau\right)
$$

denote the cumulative losses of f and our predictions, respectively, at time t . Define

$$
W_t = \mathop{\mathbb{E}}_{f \sim \pi} [\exp(-\eta L_t(f))] , \quad \forall t \in \{1, ..., T\} .
$$

- (a) Show that $\ln W_T \ge \inf_{f \in \mathcal{F}} [\eta L_T(f) \log \pi(f)].$
- (b) Show that

$$
\frac{W_{t+1}}{W_t} = \mathop{\mathbb{E}}_{f \sim q_{t+1}} [\exp(-\eta \ell (f(x_{t+1}), y_{t+1}))].
$$

(c) Use part (b) to show that

$$
\ln W_T \le -\eta \sum_{t=1}^T \mathop{\mathbb{E}}_{f \sim q_t} \left[\ell \left(f_t(x_t), y_t \right) \right] + \frac{\eta^2 T}{8}.
$$

Hint: Recall Hoeffding's Lemma: for a random variable X with $X \in [a, b]$ a.s.,

$$
\ln \mathbb{E}\left[e^{sX}\right] \leq s \mathbb{E}\left[X\right] + \frac{s^2(b-a)^2}{8}.
$$

(d) Use parts (a) and (c) and a convenient choice of η to bound the expected loss of the exponential weights algorithm by

$$
\mathbb{E}\left[L_T(\widehat{f})\right] \leq \inf_{f \in \mathcal{F}} \left[L_T(f) + (1 - \log \pi(f))\sqrt{\frac{T}{8}}\right].
$$

If F is finite, give a simple sufficient condition on the prior π such that the regret

$$
\mathbb{E}\left[L_T(\widehat{f})\right] - \inf_{f \in \mathcal{F}} L_T(f) \in O\left(T^{1/2}\right).
$$

Solution:

(a) Since a max of non-negative elements is at most their sum,

$$
\ln W_T = \ln \left(\sum_{f \in \mathcal{F}} e^{\ln \pi(f) - \eta L_T(f)} \right)
$$

\n
$$
\geq \ln \left(\max_{f \in \mathcal{F}} e^{\ln \pi(f) - \eta L_T(f)} \right) = \max_{f \in \mathcal{F}} \left[\ln \pi(f) - \eta L_t(f) \right] = -\min_{f \in \mathcal{F}} \eta L_t(f) - \ln \left(\pi(f) \right).
$$

(b) Since each $q_1(f) = \pi(f)$ and each $q_{t+1}(f) = q_t(f)e^{-\eta l(f(x_t), y_t)}$, it is easy to see by induction on t that each

$$
q_t(f) = \frac{\pi(f)e^{-\eta \sum_{s=1}^{t-1} l(f(x_s), y_s)}}{\sum_{f \in \mathcal{F}} q_t(f)} = \frac{\pi(f)e^{-\eta L_{t-1}(f)}}{\sum_{f \in \mathcal{F}} \pi_j e^{-\eta L_{t-1}(f)}}.
$$

Thus,

$$
\frac{W_t}{W_{t-1}} = \sum_{f \in \mathcal{F}} \frac{\pi(f)e^{-\eta L_t(f)}}{\sum_{g \in \mathcal{F}} \pi(g)e^{-\eta L_{t-1}(g)}} = \sum_{f \in \mathcal{F}} e^{-\eta l(f(x_t), y_t)} \frac{\pi_i e^{-\eta L_{t-1}(f)}}{\sum_{g \in \mathcal{F}} \pi(g)e^{-\eta L_{t-1}(g)}} = \sum_{f \in \mathcal{F}} e^{-\eta l(f(x_t), y_t)} q_t(i) = \mathop{\mathbb{E}}_{f \sim q_t} \left[e^{-\eta l(f(x_t), y_t)} \right].
$$

(c) Expanding $ln(W_T)$ as a telescoping sum, applying part (b), and using the given bound (with $a = 0, b = 1, X = l(f(x_t), y_t), s = -\eta$),

$$
\ln(W_T) = \ln(W_0) + \sum_{t=1}^T \ln(W_t) - \ln(W_{t-1}) \le \sum_{t=1}^T \ln \mathop{\mathbb{E}}_{f \sim q_t} \left[e^{-\eta l(f(x_t, y_t)} \right]
$$

$$
\le \sum_{t=1}^T -\eta \mathop{\mathbb{E}}_{f \sim q_t} \left[l(f(x_t), y_t) \right] + \frac{\eta^2}{8}
$$

$$
\le -\eta \left(\sum_{t=1}^T \mathop{\mathbb{E}}_{f \sim q_t} \left[l(f_t(x_t), y_t) \right] \right) + \frac{\eta^2 T}{8},
$$

since $ln(W_0) = 0$.

(d) By parts (a) and (c),

$$
-\eta \min_{f \in \mathcal{F}} L_t(f) - \ln \pi(f) \le -\eta \sum_{t=1}^T \mathbb{E}_{f \sim q_t} l(f(x_t), y_t) + \frac{\eta^2 T}{8}.
$$

Dividing through by T and solving for $L_T(\widehat{f}),$ gives

$$
L_T(\widehat{f}) \le \inf_{f \in \mathcal{F}} \left\{ L_T(f) + \frac{\eta}{8} + \frac{\ln(1/\pi(f))}{\eta} \right\}
$$

$$
\le \inf_{f \in \mathcal{F}} \left\{ L_T(f) + (1 + \ln(1/\pi(f))) \sqrt{\frac{T}{8}} \right\},
$$
 (5)

for $\eta = \sqrt{\frac{8}{7}}$ $\frac{8}{T}$. If F is finite and $\pi_* := \min_{f \in \mathcal{F}} \pi(f) > 0$, then, letting $f_* := \operatorname{argmin}_{f \in \mathcal{F}} L_T(f)$, (5) implies

$$
L_T(\hat{f}) - L_T(f_*) \le (1 - \ln \pi_*) \sqrt{\frac{T}{8}} \in O(T^{1/2}).
$$

References

Peter Harremoës. Binomial and poisson distributions as maximum entropy distributions. IEEE Transactions on information theory, 47(5):2039–2041, 2001.