
10-704 Information Processing and Learning Fall 2016

Homework 2
Due: Friday, October 28, 2016

Notes: For positive integers k, [k] := {1, . . . , k} denotes the set of the first k positive integers.
When X ∼ p and Y ∼ q are random variables over the same sample space, D(X||Y ), D(X||q), and
D(p||Y ) should all be read as D(p||q). The homework is out of 75 points – 5 points per part.

1. Maximum Entropy of Independent Bernoulli Sums

In this problem, we will show that the binomial and (optionally) Poisson distributions are
maximum entropy (MaxEnt) distributions over an appropriate class P of distributions, and
derive several useful properties of KL divergence along the way.

For any positive integer n and p ∈ [0, 1], let Binomial(n, p) denote the binomial distribution
(the sum of n IID Bernoulli events of probability p), which has density function

Binomialn,p(k) =

(
n

k

)
pk(1− p)1−k.

For λ ≥ 0, let Π(λ) denote the mean-λ Poisson distribution, which has density function

Poissonλ(k) =
λk

k!
e−λ, ∀k ∈ N ∪ {0}.

The class Pλ of distributions is that of sums Sn :=
∑n

i=1Xi of n independent (but not
necessarily identically distributed) binary variables {Xi}ni=1 constrained such that E [Sn] = λ,
for some λ ∈ [0, n]. Note that any p ∈ Pλ can be parametrized by (p1, . . . , pn) ∈ [0, 1]n,
with

∑n
i=1 pi = λ. We will show that the Binomial case p1 = · · · = pn = λ

n is the MaxEnt
distribution over Pλ, and that the Poisson distribution is the limit as n→∞.

(a) Derive the maximum likelihood estimate of λ under the assumption that you observe n
IID samples X1, . . . , Xn from a Poisson distribution.

(b) Define D(X) := minλ≥0D(X||Π(λ)). Derive a closed form for D(X) in terms of X. 1

(c) Show that the KL divergence D(p||q) is convex in p.

(d) Let

Pλ(p3, . . . , pn) = {q ∈ Pλ : q3 = p3, . . . , qn = pn, }

=

{
(x1, x2, p3, . . . , pn) : x1 + x2 = λ−

n∑
i=3

pi

}
denote the subspace of Pλ with all but two coordinates fixed. Show that H(Sn) is
strictly concave on Pλ(p3, . . . , pn). (Hint: Use parts (b) and (c) to reduce this to showing
E [log(Sn!)] is strictly concave on Pλ(p3, . . . , pn). Then, since

E [log(Sn!)] = E [E [log(Sn!)|X3, . . . , Xn]] ,

1X may have any distribution over {0, 1, 2 . . . }, but you may assume any necessary functionals of X are finite.
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which is a linear functional of E [log(Sn!)|X3, . . . , Xn], show that E [log(Sn!)|X3, . . . , Xn]
is strictly concave on Pλ(p3, . . . , pn), for any values of X3, . . . , Xn.)

(e) Use part (d) to show that Binomial(n, λ/n) is the unique MaxEnt distribution over P.

(f) Given independent random variables X and Y taking values on N, show that

D(X + Y ) ≤ D(X) +D(Y ). (1)

(Hint: Use the General Data Processing Inequality from Homework 1 and the fact that
the sum of two Poisson-distributed variables with means λ1 and λ2 is itself Poisson-
distributed with mean λ1 + λ2.)

(g) Show that D
(
Binomial

(
n, λn

))
→ 0 as n→∞. This is (a fairly strong form of) the “Law

of Rare Events” (a.k.a. the “Poisson Limit Theorem”), which states that the frequency
of a large number of unlikely events is approximately Poisson-distributed and justifies
many applications of the Poisson distribution. (Hint: Show D(Xi) ≤ p2i and apply (1).)

(h) (This part is optional.) Show that H(Π(λ)) = limn→∞H(B(n, λ/n)). (Hint: Use
the equivalence

H(p) +D(p||q) = E
X∼p

[log q(x)] ,

discussed in Lecture 1. Note that one step of this proof requires switching a limit and
an infinite summation. If you are not familiar with the dominated convergence theorem,
you may wish to take this step for granted.)

Solution: (Based on Harremoës [2001], though part (d) is simplified.)

(a) For any λ ∈ [0,∞), the log-likelihood function is

`(Xn
1 |λ) =

n∑
i=1

log

(
λXi

Xi!
e−λ
)

=

n∑
i=1

Xi log λ− log(Xi!)− λ = nX̄ log λ− nλ+

n∑
i=1

log(Xi!)

for X̄ = 1
n

∑n
i=1X1. This is clearly concave and smooth in λ, so that, at the MLE

λ̂MLE = argmaxλ∈[0,∞) `(X
n
1 |λ), we have,

0 =
d

dλ
`(Xn

1 |λ)
∣∣
λ=λ̂MLE

=
nX̄

λ̂MLE

− n.

Hence λ̂MLE = X̄ is the empirical mean of X.

(b) Hence, we can plug part (a) into the definition of D, giving First calculate

D(X||Π(λ)) =

∞∑
j=0

pj log

(
pj

λj

j! e
−λ

)

= λ+
∞∑
j=0

pj log

(
j!

λj

)
−H(X)

= λ− E[X] log λ+ E [logX!]−H(X)
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Recalling that the MLE minimizes KL divergence gives, by part (a), that

D(X) = D(X||Π(E[X])) = E[X]− E[X] logE[X] + E [logX!]−H(X).

(c) Note that, for any c > 0, the function fc : [0,∞) → R defined by fc(x) = x log
(
x
c

)
is

convex (since f ′′c (x) = 1
x ≥ 0). Thus, ∀α ∈ [0, 1] and probability densities p1, p2, q on X ,

D(αp1 + (1− α)p2||q) =

∫
X
fq(x)(αp1(x) + (1− α)p2(x)) dx

≤
∫
X
αfq(x)(p1(x)) + (1− α)fq(x)(p2(x)) dx

= αD(p1||q) + (1− α)D(p2||q)

(noting αp1(x) + (1− α)p2(x) = 0 implies p1(x) = 0 or p2(x) = 0, so that the inequality
applied to fq(x) holds trivially when q(x) = 0).

(d) By part (b) and the fact that E[Sn] = λ,

H(Sn) = λ− λ log λ+ E [log(Sn!)]−D(Sn||Π(λ)).

Since λ is fixed and D is convex in its first argument, it remains only to show that
E [log(Sn!)] is concave on Pλ(p3, . . . , pn).

E [logSn!] = E

[
E

[
log

(
X1 +X2 +

n∑
i=3

Xi

)
!|X3, . . . , Xn

]]

Since this is linear in

E

[
log

(
X1 +X2 +

n∑
i=3

Xi

)
!

∣∣∣∣∣X3, . . . , Xn

]
, (2)

it suffices to show that, for any fixed values of X3, . . . , Xn, (2) is concave in p1 and p2.
Let T :=

∑n
i=3Xi, and let r := λ−

∑n
i=3 pi. Using the facts that X1, X2, and T are all

independent, X1 +X2 ∈ {0, 1, 2}, and p1 = r − p2,

E

[
log

(
X1 +X2 +

n∑
i=3

Xi

)
!|X3, . . . , Xn

]
= E [log (X1 +X2 + T )!|T ]

= (1− p1)(1− p2) log(T !) + (p1(1− p2) + (1− p1)p2) log((T + 1)!) + p1p2 log((T + 2)!)

= log T ! + (p1 + p2 − p1p2) log(T + 1) + p1p2 (log(T + 2))

= log T ! + (λ− r) log(T + 1) + p1(r − p1) (log(T + 2)− log(T + 1))

The above expression is a quadratic polynomial in p1, with a negative quadratic coeffi-
cient, and is therefore concave. Since, clearly, p1(r − p1) is concave and log(T + 2) >
log(T + 1), the above expression is convex in p1 and p2, along the line p1 + p2 = r.
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(e) Since Pλ ⊆ Rn is compact and H is continuous, p∗ ∈ argmaxp∈Pλ H(p) exists. Suppose,
for sake of contradiction, that, for some i, j ∈ [n], p∗i 6= p∗j . Define q∗ ∈ Pλ by

q∗` =

{
p∗i+p

∗
j

2 : ` ∈ {i, j}
p∗` : otherwise

.

By part (e) and symmetry, H(q∗) > H(p∗), which is a contradiction.

(f) Let λX := argminλ>0D(X||Π(λ)) and λY := argminλ>0D(Y ||Π(λ)). Using the fact that
X and Y are independent followed by the General Data Processing Inequality applied
the function (x, y) 7→ x+ y and the fact that Π(λX) + Π(λY ) = Π (λX + λY ),

D(X) +D(Y ) = D((X,Y )||(Π(λX),Π(λY )))

≤ D(X + Y ||Π(λX + λY )) ≤ D(X + Y ).

(g) Using the inequality log(1− x) ≤ −x,

D(Xi) = (1− pi) ln(1− pi) + pi ≤ (pi − 1)pi + pi = p2i .

Thus, for the binomial case p1 = · · · = pn = λ/n, by (1),

D(Sn) ≤
n∑
i=1

p2i =
λ2

n
→ 0 as n→∞.

(h) For convenience, let pn = Binomial(n, λ/n) and q = Π(λ). By parts (b) and (g), as
n→∞, D(pn) = D(pn, q)→ 0. Thus,

lim
n→∞

H(pn) = lim
n→∞

E
X∼pn

[log q(x)]−D(pn||q)

= lim
n→∞

E
X∼pn

[log q(x)]

= lim
n→∞

∞∑
i=0

pn(i) log q(i). (3)

Note that

pn(i) =

(
n

i

)(
λ

n

)i(
1− λ

n

)n−i
≤
(
n

i

)(
λ

n

)i
=

n!

i!(n− i)!

(
λ

n

)i
≤ λi

i!
= q(i)eλ

and one can easily calculate

∞∑
i=0

q(i)eλ log q(i) = eλH(q) <∞.

Hence, by the dominated convergence theorem, the limit and infinite series in (3) com-
mute. Since, as a particular consequence of part (g), pn → q pointwise, this gives

lim
n→∞

H(pn) =

∞∑
i=0

lim
n→∞

pn(i) log q(i) =
∞∑
i=0

q(i) log q(i) = H(q).
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2. Wavelet Denoising with CRM

In this problem, we will analyze the convergence rate of a wavelet-based denoising estimator.

Haar wavelets and quantization: Recall that Haar wavelets over X := [0, 1) are piecewise
constant functions ψj,k : X → {−2j/2, 0, 2j/2} such that

ψj,k(x) = 2j/2
(
1[k2−j ,(k+1/2)2−j) − 1[(k+1/2)2−j ,(k+1)2−j)

)
,

for all j ∈ N ∪ {0}, k ∈ {0, . . . , 2j − 1}, x ∈ X . Since Haar wavelets for a basis for L2(X ), for
any ` ∈ N ∪ {0}, if we define the projection

f` :=
∑̀
j=0

2j−1∑
k=0

〈ψj,k, f〉,

of f onto the first ` + 1 scales of the Haar basis, then f` → f as ` → ∞. To encode the
projection f`, we also need to quantize the coefficients. Quantized projections lie in the set

Q`,ε :=

∑̀
j=0

2j−1∑
k=0

aj,kψj,k ∈ L2(X ) : aj,k = 2bj,kε, for some integer bj,k

 ,

so that their wavelet coefficients are multiples of ε. Our quantized projection of f is then

f`,ε := argmin
g∈Q`,ε

‖f − g‖2.

Thus, f`,ε is the best (in L2 distance) representation of f in terms of Haar wavelets of scale
at most ` and coefficient precision ε.

CRM Denoising: We will assume the true function f lies in the class Fs,M ⊆ L2(X ) of
piecewise constant functions with at most s discontinuities and bounded L∞ norm ‖f‖∞ =
supx∈X |f(x)| ≤ M . We observe n noisy IID pairs {(Xi, Yi)}ni=1, where each X1, . . . , Xn ∼
U(X ) is uniformly distributed and, for ε1, . . . , εn ∼ N (0, σ2), Yi = f(Xi) + εi.

For δ ∈ (0, 1), the complexity-penalized empirical risk minimizing (CRM) estimator 2 is

f̂`,ε,δ := argmin
g`,ε∈Q`,ε

[
‖g`,ε − f‖22 +

c(g`,ε)− ln δ

n

]
,

where c(g`,ε) denotes the number of bits required to encode g`,ε. In class, we derived the
following excess risk bound for CRM estimators:

R
(
f̂`,ε,δ

)
−R∗ = ‖f̂`,ε,δ − f‖22 ≤ inf

g

[
‖g`,ε − f‖22 +

c (g`,ε)− ln δ

n

]
+ δ. (4)

In this problem, we will analyze the terms of (4) to derive a convergence rate bound in terms
of the complexity s of f and the sample size n.

2Recall that f̂`,ε,δ can be easily computed by hard-thresholding.
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(a) Show that the projections f` and f`,ε can each have at most C0s`+1 nonzero coefficients,
for some constant C0.

(b) Bound the approximation errors ‖f − f`‖22 and ‖f − f`,ε‖22.
(c) How many bits c(f) are required to encode f`,ε (for known s, M , `, and ε)?

(d) By choosing ε > 0, ` ∈ N, and δ > 0 appropriately, use parts (b) and (c) with the
bound(4) show 3

‖f̂ − f‖22 ∈ O
(
s log2 n

n

)
.

Note that, up to log factors, this is a parametric rate with s parameters.

Solution:

(a) If f is constant over the support of some wavelet, then the projection of f onto that
wavelet, as well as any child of that wavelet, is clearly 0. Since f changes values only
at its (at most s) discontinuities, it is non-constant on the supports of at most s of the
wavelets at any scale. Since f` includes projections onto only the top ` scales, it has at
most s`+ 1 non-zero coefficients (adding one for the projection onto ψ0,0).

Since 0 is a multiple of ε, any non-zero coefficient in f`,ε corresponds to a non-zero

coefficient of f`, and so, by part (a), at most s`+ 1 coefficients of f`,ε are non-zero.

(b) Linear combinations of wavelets of scale at most ` can exactly fit f except on the at
most s intervals of lengths 2−` on which f is discontinuous. That is, the measure of the
set E ⊆ [0, 1] on which the wavelet approximation is not exactly equal to f is at most
s2−`. Since ‖f‖∞ ≤ M , if the wavelet approximation is 0 whenever it is not exactly f ,
the error of the approximation for any x ∈ E is at most M . Since the wavelet basis is
orthonormal, f` as defined minimizes the error of approximating f by wavelets of scale

at most `, and thus, ‖f − f`‖22 ≤M2s2−`.

Note, for any j, k, a ∈ R, if aε denotes a rounded to the nearest multiple of ε, then

‖aψj,k − aεψj,k‖22 = |a− aε|2(2j/2)2 · 2−j ≤ ε2.

(since aψj,k and aεψj,k disagree by at most ε2j/2 on an interval of length at most 2−j).
Thus, ‖f` − (f`)`,ε‖22 ≤ 2slε2, where k is the number of nonzero coefficients of f`. Using
the definition of f`,ε, the Pythagorean Theorem, and parts (a) and (b),

‖f − f`,ε‖22 ≤ ‖f − (f`)`,e‖22 = ‖f − f`‖22 + ‖f` − (f`)`,e‖22 ≤ M2s2−` + 2s`ε2.

(c) Since each coefficient of f`,ε has 2M/ε possible nonzero values, any given non-zero coef-
ficient can be specified with at most log2(2M/ε). Since there are at most 2s` nonzero

coefficients, we can encode f`,ε using c(f`,ε) ≤ 2s` log2(2M/ε) bits.

3Here, treat M as a constant.
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(d) Since f̂`,ε ∈ Q`,ε, the CRM bound and parts (b) and (c) give

‖ĝ − f̂‖22 ≤ min
g∈Q`,ε

{
‖g − f̂‖22 +

c(g) + ln(1/δ)

n

}
+ δ

≤ ‖f̂`,ε − f̂‖22 +
c(f∗`,ε) + ln(1/δ)

n
+ δ

≤M2s2−` + 2s`ε2 +
2s` log2(2M/ε) + ln(1/δ)

n
+ δ

≤ s(2 log2 n+M)

n
+
s log22(2Mn) + lnn

n
+

1

n
∈ O

(
s log2 n

n

)
,

for ε = n−1/2, l = log2 n, δ = 1/n.

3. Universal Prediction with Exponential Weights

Fix a (potentially infinite) countable class of predictors F . Recall that, in the universal
prediction setting, at each time point t ∈ {1, . . . , T} up to a predetermined time horizon
T , we see some data xt and choose a predictor f̂t ∈ F , before then seeing a true label

yt and suffering loss `
(
f̂t(xt), yt

)
∈ [0, 1]. Since we are allowing, for example, adversarial

sequences {(xt, yt)}Tt=1, a randomized algorithm is needed to provide any guarantees. Given
a learning rate η > 0 and prior π over F , the exponential weights algorithm proposes to draw
f̂t according to a distribution qt defined such that q1 = π and each

qt+1(f) ∝ qt(f) exp (−η` (f(xt), yt)) .

For each f ∈ F and t ∈ [T ], let

Lt(f) :=
t∑

τ=1

` (f(xτ ), yτ ) and Lt(f̂) :=
t∑

τ=1

`
(
f̂τ (xτ ), yτ

)
denote the cumulative losses of f and our predictions, respectively, at time t. Define

Wt = E
f∼π

[exp (−ηLt(f))] , ∀t ∈ {1, . . . , T} .

(a) Show that lnWT ≥ − inff∈F [ηLT (f)− log π(f)].

(b) Show that
Wt+1

Wt
= E

f∼qt+1

[exp (−η` (f(xt+1), yt+1))] .

(c) Use part (b) to show that

lnWT ≤ −η
T∑
t=1

E
f∼qt

[` (ft(xt), yt)] +
η2T

8
.

Hint: Recall Hoeffding’s Lemma: for a random variable X with X ∈ [a, b] a.s.,

lnE
[
esX
]
≤ sE [X] +

s2(b− a)2

8
.
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(d) Use parts (a) and (c) and a convenient choice of η to bound the expected loss of the
exponential weights algorithm by

E
[
LT (f̂)

]
≤ inf

f∈F

[
LT (f) + (1− log π(f))

√
T

8

]
.

If F is finite, give a simple sufficient condition on the prior π such that the regret

E
[
LT (f̂)

]
− inf
f∈F

LT (f) ∈ O
(
T 1/2

)
.

Solution:

(a) Since a max of non-negative elements is at most their sum,

lnWT = ln

∑
f∈F

elnπ(f)−ηLT (f)


≥ ln

(
max
f∈F

elnπ(f)−ηLT (f)
)

= max
f∈F

[lnπ(f)− ηLt(f)] = −min
f∈F

ηLt(f)− ln (π(f)) .

(b) Since each q1(f) = π(f) and each qt+1(f) = qt(f)e−ηl(f(xt),yt), it is easy to see by
induction on t that each

qt(f) =
π(f)e−η

∑t−1
s=1 l(f(xs),ys)∑

f∈F qt(f)
=

π(f)e−ηLt−1(f)∑
f∈F πje

−ηLt−1(f)
.

Thus,

Wt

Wt−1
=
∑
f∈F

π(f)e−ηLt(f)∑
g∈F π(g)e−ηLt−1(g)

=
∑
f∈F

e−ηl(f(xt),yt)
πie
−ηLt−1(f)∑

g∈F π(g)e−ηLt−1(g)

=
∑
f∈F

e−ηl(f(xt),yt)qt(i) = E
f∼qt

[
e−ηl(f(xt),yt)

]
.

(c) Expanding ln(WT ) as a telescoping sum, applying part (b), and using the given bound
(with a = 0, b = 1, X = l(f(xt), yt), s = −η),

ln(WT ) = ln(W0) +

T∑
t=1

ln(Wt)− ln(Wt−1) ≤
T∑
t=1

ln E
f∼qt

[
e−ηl(f(xt,yt)

]
≤

T∑
t=1

−η E
f∼qt

[l(f(xt), yt)] +
η2

8

≤ −η

(
T∑
t=1

E [l(ft(xt), yt)]

)
+
η2T

8
,

since ln(W0) = 0.
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(d) By parts (a) and (c),

−ηmin
f∈F

Lt(f)− lnπ(f) ≤ −η
T∑
t=1

E
f∼qt

l(f(xt), yt) +
η2T

8
.

Dividing through by T and solving for LT (f̂), gives

LT (f̂) ≤ inf
f∈F

{
LT (f) +

η

8
+

ln (1/π(f))

η

}
≤ inf

f∈F

{
LT (f) + (1 + ln (1/π(f)))

√
T

8

}
, (5)

for η =
√

8
T . If F is finite and π∗ := minf∈F π(f) > 0, then, letting f∗ := argminf∈F LT (f),

(5) implies

LT (f̂)− LT (f∗) ≤ (1− lnπ∗)

√
T

8
∈ O

(
T 1/2

)
.
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