Quiz 1 Date: Monday, October 17, 2016

Name:		
Andrew ID:		

Department:

Guidelines:

1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED.

- 2. Write your name, Andrew ID, and department in the spaces provided above.
- 3. You have sixty (60) minutes for this exam.
- 4. This exam has seven (7) pages on seven (7) sheets of paper, including this one.
- 5. This exam has a total of 50 possible points. The number of points allocated to each question is indicated next to each question.
- 6. This exam is open notes. You may use any materials such as cheat sheets, class notes, etc. No electronic devices are permitted.
- 7. The questions vary in difficulty. The points allocated to a question do not entirely reflect its difficulty. Do not spend too much time on one question.
- 8. Questions only appear on one side of each sheet of paper. You may use any blank space for your answer or scratch work, but please clearly indicate your answers.

1. [10 points] Consider the undirected graphical model shown below:

(a) Which of the following statements are always true? No justification is needed.
i. (2 points) H(X₀|X₁) ≤ H(X₀|X₂)

ii. (2 points) $I(X_0; X_3) \le I(X_0; X_5)$

iii. (2 points) $I(X_2; X_5 | X_4) \le I(X_2; X_3 | X_4)$

(b) (4 points) Suppose we observe *n* IID samples from the joint distribution of (X_0, \ldots, X_5) , and use the Chow-Liu algorithm with a consistent mutual information estimator. Explain why we never recover the above graph structure, even as $n \to \infty$.

2. [12 points] Let X_i for $i \in [d] = \{1, \dots, d\}$ be independent random variables. Show that (a) (3 points) Show that $I(X_i; X_i + X_j) = H(X_i + X_j) - H(X_j)$.

(b) (4 points) Show that $I(X_i; X_i + X_j) \ge I(X_i; X_i + X_j + X_k)$.

(c) (5 points) Define $f: 2^{[d]} \to \mathbb{R}$ by

$$f(S) := H\left(\sum_{i \in S} X_i\right), \quad \forall S \subseteq [d].$$

Show that f is submodular.

3. [8 points] Suppose you flip a coin independently n times and observe cn heads and (1-c)n tails. Explain how to use the MDL principle to choose the best model amongst $M = \bigcup_{\ell} M_{\ell}$, where

 M_{ℓ} : The probability the coin lands heads is $z2^{-\ell}$ for some integer $z \in [0, 2^{\ell})$.

Write the MDL rule in terms of n, c, z and ℓ only.

4. [10 points] Suppose we already have an estimate \hat{p} for some probability density p on \mathcal{X} . Using n new IID samples $X_1, \ldots, X_n \sim p$, we want to estimate the squared L_2 -norm

$$||p||_2^2 = \int_{\mathcal{X}} p^2(x) \, dx = \mathbb{E}_{X \sim p} \left[p(X) \right].$$

of p. Show that the first-order von Mises estimator is identical to the re-substitution estimator:

$$\frac{1}{n}\sum_{i=1}^{n}\widehat{p}(x),$$

5. [10 points] Consider a set of k variables X_1, \ldots, X_k , and suppose we know the pairwise distributions $p(X_i, X_{i+1})$, for $i \in \{1, \ldots, k-1\}$, of consecutive pairs. Show that the MaxEnt joint distribution $p(X_1, \ldots, X_k)$ is a first-order Markov chain (i.e., for any $i_1 < i_2 < i_3$ in $\{1, \ldots, k\}, X_{i_1}$ and X_{i_3} are conditionally independent given X_{i_2}). (Hint: Write the joint distribution $H(X_1, \ldots, X_k)$ in terms of $\sum_{i=1}^k H(X_i|X_{i-1})$ +another term.)

6. [Optional - no credit] If you found the quiz too easy, prove the following for problem 1. Assume all the edge weights are distinct. Argue that, as $n \to \infty$, we always recover the edge $X_0 - X_1$. (*Hint: Argue by means of contradiction.*)

Please do not mark below this line.

Problem	Max	Points
Q1	10	
Q2	12	
Q3	8	
Q4	10	
Q5	10	
Total	50	