Quiz 1 Date: Monday, October 17, 2016

Name:		
Andrew ID:		

Department:

Guidelines:

1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED.

- 2. Write your name, Andrew ID, and department in the spaces provided above.
- 3. You have sixty (60) minutes for this exam.
- 4. This exam has seven (7) pages on seven (7) sheets of paper, including this one.
- 5. This exam has a total of 50 possible points. The number of points allocated to each question is indicated next to each question.
- 6. This exam is open notes. You may use any materials such as cheat sheets, class notes, etc. No electronic devices are permitted.
- 7. The questions vary in difficulty. The points allocated to a question do not entirely reflect its difficulty. Do not spend too much time on one question.
- 8. Questions only appear on one side of each sheet of paper. You may use any blank space for your answer or scratch work, but please clearly indicate your answers.

1. [10 points] Consider the undirected graphical model shown below:

- (a) Which of the following statements are always true? No justification is needed.
 - i. (2 points) $H(X_0|X_1) \le H(X_0|X_2)$
 - ii. (2 points) $I(X_0; X_3) \le I(X_0; X_5)$
 - iii. (2 points) $I(X_2; X_5 | X_4) \le I(X_2; X_3 | X_4)$
- (b) (4 points) Suppose we observe *n* IID samples from the joint distribution of (X_0, \ldots, X_5) , and use the Chow-Liu algorithm with a consistent mutual information estimator. Explain why we never recover the above graph structure, even as $n \to \infty$.

Solution:

- (a) i. True; $H(X_0|X_1) = H(X_0) I(X_0;X_1) \le H(X_0) I(X_0;X_2) = H(X_0|X_2)$. ii. False.
 - iii. True; for any fixed value $X_4 = x$, $X_2 X_3 X_5$ is a Markov chain, so $I(X_2; X_5 | X_4 = x) \le I(X_2; X_3 | X_4 = x)$. Now take expectations over X_4 .
- (b) The Chow-Liu algorithm only outputs tree-shaped graphical models, and hence it cannot recover the cycle on the right.

- 2. [12 points] Let X_i for $i \in [d] = \{1, \ldots, d\}$ be independent random variables. Show that
 - (a) **(3 points)** Show that $I(X_i; X_i + X_j) = H(X_i + X_j) H(X_j)$.
 - (b) **(4 points)** Show that $I(X_i; X_i + X_j) \ge I(X_i; X_i + X_j + X_k)$.
 - (c) (5 points) Define $f: 2^{[d]} \to \mathbb{R}$ by

$$f(S) := H\left(\sum_{i \in S} X_i\right), \quad \forall S \subseteq [d]$$

Show that f is submodular.

Solution:

(a) Since the distribution $X_i + X_j | X_i$ is a shifted version of the distribution of X_j , $H(X_i + X_j | X_i) = H(X_j)$. Thus,

$$I(X_i, X_i + X_j) = H(X_i + X_j) - H(X_i + X_j | X_i) = H(X_i + X_j) - H(X_j).$$

- (b) Since $X_i \to X_i + X_j \to X_i + X_j + X_k$ is a Markov chain, this follows from the data processing inequality.
- (c) For any $S \subseteq [d]$, $i, j \in [d]$, by the previous parts,

$$f(S \cup \{i, j\}) - f(S \cup \{j\}) = H\left(X_i + X_j + \sum_{k \in S} X_k\right) - H\left(X_j + \sum_{k \in S} X_k\right)$$
$$= I\left(X_i; X_i + X_j + \sum_{k \in S} X_k\right)$$
$$\leq I\left(X_i; X_i + \sum_{k \in S} X_k\right)$$
$$= H\left(X_i + \sum_{k \in S} X_k\right) - H\left(\sum_{k \in S} X_k\right) = f(S \cup \{i\}) - f(S).$$

- 3. [8 points] Suppose you flip a coin independently n times and observe cn heads and (1-c)n tails. Explain how to use the MDL principle to choose the best model amongst $M = \bigcup_{\ell} M_{\ell}$, where
 - M_{ℓ} : The probability the coin lands heads is $z2^{-\ell}$ for some integer $z \in [0, 2^{\ell})$.

Write the MDL rule in terms of n, c, z and ℓ only.

Solution: We can encode a model in M_{ℓ} with $\log_2(2^{\ell}) = \ell$ bits, and use another ℓ bits to encode ℓ itself.¹ Thus, each model can be encoded with 2ℓ bits. Encoding the data takes $cn \log(1/(z2^{-\ell})) + (1-c)n \log(1/(1-z2^{-\ell}))$ bits. Hence, the MDL rule is

 $\arg\min_{\ell} cn \log(1/(z2^{-\ell})) + (1-c)n \log(1/(1-z2^{-\ell})) + 2\ell$

¹One can actually encode ℓ with log ℓ bits. Either is acceptable, since this term is asymptotically negligible.

4. [10 points] Suppose we already have an estimate \hat{p} for some probability density p on \mathcal{X} . Using n new IID samples $X_1, \ldots, X_n \sim p$, we want to estimate the squared L_2 -norm

$$||p||_2^2 = \int_{\mathcal{X}} p^2(x) \, dx = \mathbb{E}_{X \sim p} \left[p(X) \right].$$

of p. Show that the first-order von Mises estimator is identical to the re-substitution estimator:

$$\frac{1}{n}\sum_{i=1}^{n}\widehat{p}(x),$$

Solution: Unfortunately the problem, as stated, is incorrect. The correct von Mises estimator is derived as follows, based on the first-order von Mises expansion of the squared L_2 -norm:

$$\begin{split} \|p\|_{2}^{2} &= \|\widehat{p}\|_{2}^{2} + \langle \nabla_{p} \|\widehat{p}\|_{2}^{2}, p - \widehat{p} \rangle + O\left(\|p - \widehat{p}\|_{2}^{2}\right) \\ &= \|\widehat{p}\|_{2}^{2} + 2\langle \widehat{p}, p - \widehat{p} \rangle + O\left(\|p - \widehat{p}\|_{2}^{2}\right) \\ &\approx \|\widehat{p}\|_{2}^{2} + 2\langle \widehat{p}, p - \widehat{p} \rangle \\ &= \|\widehat{p}\|_{2}^{2} + \mathbb{E}_{p}[\widehat{p}] - \|\widehat{p}\|_{2}^{2} = 2 \mathop{\mathbb{E}}_{X \sim p}[\widehat{p}(X)] - \|\widehat{p}\|_{2}^{2}. \end{split}$$

The first term can be replaced by an empirical expectation, while the second is directly (perhaps approximately) computable from \hat{p} . Thus, the first-order von Mises estimator for the L_2 -norm is

$$\frac{2}{n}\sum_{i=1}^{n}\widehat{p}(X_i) - \int_{\mathcal{X}}\widehat{p}^2(x)\,dx.$$

Note that, for some standard estimators \hat{p} , such as orthogonal series estimators with an appropriate number of basis elements, the above estimator has the *same convergence rate* as the resubstitution estimator; the difference $\mathbb{E}_{X \sim p} [\hat{p}(X)] - \|\hat{p}\|_2^2$ is negligibly small.

5. [10 points] Consider a set of k variables X_1, \ldots, X_k , and suppose we know the pairwise distributions $p(X_i, X_{i+1})$, for $i \in \{1, \ldots, k-1\}$, of consecutive pairs. Show that the MaxEnt joint distribution $p(X_1, \ldots, X_k)$ is a first-order Markov chain (i.e., for any $i_1 < i_2 < i_3$ in $\{1, \ldots, k\}, X_{i_1}$ and X_{i_3} are conditionally independent given X_{i_2}). (Hint: Write the joint distribution $H(X_1, \ldots, X_k)$ in terms of $\sum_{i=1}^k H(X_i|X_{i-1})$ +another term.)

Solution: By the chain rule,

$$H(X_1, \dots, X_k) = \sum_{i=1}^k H(X_i | X_1, \dots, X_{i-1})$$
$$= \sum_{i=1}^k H(X_i | X_{i-1}) - I(X_i; X_1, \dots, X_{i-2} | X_{i-1})$$

Since mutual information is non-negative, this is clearly maximized when

$$I(X_i; X_1, \dots, X_{i-2} | X_{i-1}) = 0, \quad \forall i \in \{2, \dots, k\}.$$
(1)

This occurs precisely when each X_i is conditionally independent of (X_1, \ldots, X_{i-2}) given X_{i-1} . Thus, in the undirected graphical model of the MaxEnt distribution, for $i_1 < i_3$, every path from X_{i_1} to X_{i_3} goes through X_{i_3-1} , and it follows by induction that every path from X_{i_1} to X_{i_3} goes through X_{i_2} , for all $i_1 < i_2 < i_3$.

Finally, note that (1) is achievable, for instance, by the process that draws X_1 from the marginal of $p(X_1, X_2)$, and then, for each $i \in \{1, \ldots, k-1\}$, recursively draws X_{i+1} from the conditional $p(X_{i+1}|X_i)$.

6. [Optional - no credit] If you found the quiz too easy, prove the following for problem 1. Assume all the edge weights are distinct. Argue that, as $n \to \infty$, we always recover the edge $X_0 - X_1$. (*Hint: Argue by means of contradiction.*)

Solution: As $n \to \infty$, we almost surely (with probability 1) estimate the edge weights exactly. Let T denote the Chow-Liu tree, and suppose, for sake for contradiction, that T does not contain $X_0 - X_1$. Let X_i denote any neighbor of X_0 . Construct a new graph T' by removing all edges adjacent to X_0 , re-attaching all but $X_0 - X_i$ to X_i , and adding $X_0 - X_1$. Since the original graph was a tree, the new graph is still a tree. By the data processing inequality, and since the edge weights are distinct, the total weight of T is strictly less than the total weight of T'. This contradicts the fact that the Chow-Liu algorithm chooses the maximum weight spanning tree.

Please do not mark below this line.

Problem	Max	Points
Q1	10	
Q2	12	
Q3	8	
Q4	10	
Q5	10	
Total	50	