
10-704 Information Processing and Learning Fall 2016

Quiz 1
Date: Monday, October 17, 2016

Name:

Andrew ID:

Department:

Guidelines:

1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED.

2. Write your name, Andrew ID, and department in the spaces provided above.

3. You have sixty (60) minutes for this exam.

4. This exam has seven (7) pages on seven (7) sheets of paper, including this one.

5. This exam has a total of 50 possible points. The number of points allocated to each question
is indicated next to each question.

6. This exam is open notes. You may use any materials such as cheat sheets, class notes, etc.
No electronic devices are permitted.

7. The questions vary in difficulty. The points allocated to a question do not entirely reflect its
difficulty. Do not spend too much time on one question.

8. Questions only appear on one side of each sheet of paper. You may use any blank space for
your answer or scratch work, but please clearly indicate your answers.
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1. [10 points] Consider the undirected graphical model shown below:

X0 X1 X2 X3

X4

X5

(a) Which of the following statements are always true? No justification is needed.

i. (2 points) H(X0|X1) ≤ H(X0|X2)

ii. (2 points) I(X0;X3) ≤ I(X0;X5)

iii. (2 points) I(X2;X5|X4) ≤ I(X2;X3|X4)

(b) (4 points) Suppose we observe n IID samples from the joint distribution of (X0, . . . , X5),
and use the Chow-Liu algorithm with a consistent mutual information estimator. Ex-
plain why we never recover the above graph structure, even as n→∞.

Solution:

(a) i. True; H(X0|X1) = H(X0)− I(X0;X1) ≤ H(X0)− I(X0;X2) = H(X0|X2).

ii. False.

iii. True; for any fixed value X4 = x, X2−X3−X5 is a Markov chain, so I(X2;X5|X4 =
x) ≤ I(X2;X3|X4 = x). Now take expectations over X4.

(b) The Chow-Liu algorithm only outputs tree-shaped graphical models, and hence it cannot
recover the cycle on the right.
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2. [12 points] Let Xi for i ∈ [d] = {1, . . . , d} be independent random variables. Show that

(a) (3 points) Show that I(Xi;Xi + Xj) = H(Xi + Xj)−H(Xj).

(b) (4 points) Show that I(Xi;Xi + Xj) ≥ I(Xi;Xi + Xj + Xk).

(c) (5 points) Define f : 2[d] → R by

f(S) := H

(∑
i∈S

Xi

)
, ∀S ⊆ [d].

Show that f is submodular.

Solution:

(a) Since the distribution Xi + Xj |Xi is a shifted version of the distribution of Xj , H(Xi +
Xj |Xi) = H(Xj). Thus,

I(Xi, Xi + Xj) = H(Xi + Xj)−H(Xi + Xj |Xi) = H(Xi + Xj)−H(Xj).

(b) Since Xi → Xi + Xj → Xi + Xj + Xk is a Markov chain, this follows from the data
processing inequality.

(c) For any S ⊆ [d], i, j ∈ [d], by the previous parts,

f(S ∪ {i, j})− f(S ∪ {j}) = H

(
Xi + Xj +

∑
k∈S

Xk

)
−H

(
Xj +

∑
k∈S

Xk

)

= I

(
Xi;Xi + Xj +

∑
k∈S

Xk

)

≤ I

(
Xi;Xi +

∑
k∈S

Xk

)

= H

(
Xi +

∑
k∈S

Xk

)
−H

(∑
k∈S

Xk

)
= f(S ∪ {i})− f(S).
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3. [8 points] Suppose you flip a coin independently n times and observe cn heads and (1− c)n
tails. Explain how to use the MDL principle to choose the best model amongst M = ∪`M`,
where

M` : The probability the coin lands heads is z2−` for some integer z ∈ [0, 2`).

Write the MDL rule in terms of n, c, z and ` only.

Solution: We can encode a model in M` with log2(2
`) = ` bits, and use another ` bits to

encode ` itself.1 Thus, each model can be encoded with 2` bits. Encoding the data takes
cn log(1/(z2−`)) + (1− c)n log(1/(1− z2−`)) bits. Hence, the MDL rule is

arg min
`

cn log(1/(z2−`)) + (1− c)n log(1/(1− z2−`)) + 2`

1One can actually encode ` with log ` bits. Either is acceptable, since this term is asmptotically negligible.
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4. [10 points] Suppose we already have an estimate p̂ for some probability density p on X .
Using n new IID samples X1, . . . , Xn ∼ p, we want to estimate the squared L2-norm

‖p‖22 =

∫
X
p2(x) dx = EX∼p [p(X)] .

of p. Show that the first-order von Mises estimator is identical to the re-substitution estimator:

1

n

n∑
i=1

p̂(x),

Solution: Unfortunately the problem, as stated, is incorrect. The correct von Mises estimator
is derived as follows, based on the first-order von Mises expansion of the squared L2-norm:

‖p‖22 = ‖p̂‖22 + 〈∇p ‖p̂‖22, p− p̂〉+ O
(
‖p− p̂‖22

)
= ‖p̂‖22 + 2〈p̂, p− p̂〉+ O

(
‖p− p̂‖22

)
≈ ‖p̂‖22 + 2〈p̂, p− p̂〉
= ‖p̂‖22 + E

p
[p̂]− ‖p̂‖22 = 2 E

X∼p
[p̂(X)]− ‖p̂‖22.

The first term can be replaced by an empirical expectation, while the second is directly
(perhaps approximately) computable from p̂. Thus, the first-order von Mises estimator for
the L2-norm is

2

n

n∑
i=1

p̂(Xi)−
∫
X
p̂2(x) dx.

Note that, for some standard estimators p̂, such as orthogonal series estimators with an
appropriate number of basis elements, the above estimator has the same convergence rate as
the resubstitution estimator; the difference EX∼p [p̂(X)]− ‖p̂‖22 is negligibly small.
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5. [10 points] Consider a set of k variables X1, . . . , Xk, and suppose we know the pairwise
distributions p(Xi, Xi+1), for i ∈ {1, . . . , k − 1}, of consecutive pairs. Show that the MaxEnt
joint distribution p(X1, . . . , Xk) is a first-order Markov chain (i.e., for any i1 < i2 < i3 in
{1, . . . , k}, Xi1 and Xi3 are conditionally independent given Xi2). (Hint: Write the joint
distribution H(X1, . . . , Xk) in terms of

∑k
i=1H(Xi|Xi−1)+another term.)

Solution: By the chain rule,

H(X1, . . . , Xk) =

k∑
i=1

H(Xi|X1, . . . , Xi−1)

=
k∑

i=1

H(Xi|Xi−1)− I(Xi;X1, . . . , Xi−2|Xi−1).

Since mutual information is non-negative, this is clearly maximized when

I(Xi;X1, . . . , Xi−2|Xi−1) = 0, ∀i ∈ {2, . . . , k}. (1)

This occurs precisely when each Xi is conditionally independent of (X1, . . . , Xi−2) given Xi−1.
Thus, in the undirected graphical model of the MaxEnt distribution, for i1 < i3, every path
from Xi1 to Xi3 goes through Xi3−1, and it follows by induction that every path from Xi1 to
Xi3 goes through Xi2 , for all i1 < i2 < i3.

Finally, note that (1) is achievable, for instance, by the process that draws X1 from the
marginal of p(X1, X2), and then, for each i ∈ {1, . . . , k− 1}, recursively draws Xi+1 from the
conditional p(Xi+1|Xi).
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6. [Optional - no credit] If you found the quiz too easy, prove the following for problem 1.
Assume all the edge weights are distinct. Argue that, as n→∞, we always recover the edge
X0 −X1. (Hint: Argue by means of contradiction.)

Solution: As n → ∞, we almost surely (with probability 1) estimate the edge weights
exactly. Let T denote the Chow-Liu tree, and suppose, for sake for contradiction, that T
does not contain X0 −X1. Let Xi denote any neighbor of X0. Construct a new graph T ′ by
removing all edges adjacent to X0, re-attaching all but X0 −Xi to Xi, and adding X0 −X1.
Since the original graph was a tree, the new graph is still a tree. By the data processing
inequality, and since the edge weights are distinct, the total weight of T is strictly less than
the total weight of T ′. This contradicts the fact that the Chow-Liu algorithm chooses the
maximum weight spanning tree.

Please do not mark below this line.

Problem Max Points

Q1 10

Q2 12

Q3 8

Q4 10

Q5 10

Total 50
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