Quiz 2 Date: Monday, November 21, 2016

Name:	
Andrew ID:	

Department:

Guidelines:

1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED.

- 2. Write your name, Andrew ID, and department in the spaces provided above.
- 3. You have 60 minutes for this exam.
- 4. This exam has 9 pages on 9 (nine) sheets of paper, including this one.
- 5. This exam has a total of 50 possible points, split between 5 "short" questions and 2 "long" questions. The points allocated to each question are indicated next to that question.
- 6. This exam is open notes. You may use any materials such as cheat sheets, class notes, etc. No electronic devices are permitted.
- 7. The questions vary in difficulty. The points allocated to a question do not entirely reflect its difficulty. Do not spend too much time on one question.
- 8. Questions only appear on one side of each sheet of paper. You may use any blank space for your answer or scratch work, but please clearly indicate your answers.

1 Short Questions

- 1. We wish to encode a dictionary of 4 symbols $\{a, b, c, d\}$ using a ternary alphabet $\{0, 1, 2\}$.
 - (a) [4 points] Identify the following 4 codes as Singular (S), Non-Singular but not uniquely decodable (NS), Uniquely Decodable but not instantaneous (UD), or Instantaneous (I).
 - i. {0,1,11,21}ii. {01,10,11,02}
 - iii. $\{0, 1, 2, 1\}$
 - iv. $\{0, 112, 11, 22\}$
 - (b) [4 points] According to the IID source distribution

$$p(a) = 1/3$$
 $p(b) = 1/9$ $p(c) = 2/9$ $p(d) = 1/3$

(encoding based on that order) give a ternary arithmetic code for the sequence *bcd*. You may assume the decoder knows when to stop. (*Note: multiple valid answers exist; give any correctly decodable answer*.)

- 2. Suppose we want to transmit an input $X = (X_1, X_2)$ across two parallel Gaussian channels with joint correlation matrix Σ , under a total power constraint $\mathbb{E}\left[\|X\|_2^2\right] \leq 3$. What distribution of the input X maximizes the rate if
 - (a) **[2 points]** $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

(b) **[3 points]** $\Sigma = \begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 2 \end{bmatrix}$. (*Hint:* Σ has unit eigenvectors $v_1 = \left(\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right), v_2 = \left(\sqrt{\frac{2}{3}}, -\frac{1}{\sqrt{3}}\right)$ and corresponding eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 0$.)

- 3. [7 points] No justification is necessary for this problem.
 - (a) For each of the following tasks, would you use the Rate-Distortion (RD) method or the Information Bottleneck (IB) method?
 - i. Compress a dataset X of predictors while still being able to predict a response Y.
 - ii. Compress a video without significantly sacrificing video quality.
 - (b) True or False: The objective functions defining the rate-distortion function, the information bottleneck method, and the capacity of a channel can all be optimized using the Blahut-Arimoto algorithm.
 - (c) Let X be a random variable, and suppose T(X) is a sufficient statistic for a parameter θ . Which of the following statements is always true?
 - i. $H(\theta|X) = H(\theta|T(X)).$

ii. $H(X|\theta) \ge H(T(X)|\theta).$

iii. If T is minimal, then T is unique.

iv. P(X|T(X)) is independent of θ .

4. [5 points] Consider a discrete privacy mechanism \mathcal{M} over a space of data sets \mathcal{X} (e.g., $\mathcal{M}: \mathcal{X} \to \mathbb{N}$). Show that, if \mathcal{M} is ε -differentially private, then

$$\sup_{x,x'\in\mathcal{X}:x\sim x'} D_{KL}(\mathcal{M}(x)||\mathcal{M}(x')) \leq \varepsilon,$$

where $x \sim x'$ denotes that x and x' differ in a single entry and the KL divergence D_{KL} is over the randomness of \mathcal{M} .

- 5. [5 points] Consider universal prediction in the context of online linear regression. At each time point t, we
 - 1. observe a predictor $x_t \in \mathbb{R}^D$.
 - 2. output a prediction $\hat{y}_t \in \mathbb{R}$.
 - 3. observe a true $y_t \in \mathbb{R}$.
 - 4. suffer squared error loss $\ell(y_t, \hat{y}_t) = (y_t \hat{y}_t)^2$.

Suppose we consider all linear hypotheses, i.e., our hypothesis space can be represented by $\Theta = \mathbb{R}^D$, where $w \in \Theta$ predicts $\langle w, x \rangle$ for each input $x \in \mathbb{R}^D$. Explain how to predict each \hat{y}_t , using the exponential weights algorithm with a prior p_0 over Θ and learning rate η .

2 Long Questions

1. [10 points] Consider a channel C that takes a binary input X and returns a binary output Y, according to the following conditional distribution:

x	$\big \mathbb{P}[Y=0 X=x]$	$\mathbb{P}[Y=1 X=x]$
0	1	0
1	0.5	0.5

What is the capacity (in bits) of C?

Hint: Check that I(X;Y) is concave in p and find the maximizer.

2. [10 points] Consider *n* IID samples $(X_1, Y_1), \ldots, (X_n, Y_n) \sim \mathcal{N}(0, \Sigma)$, where

$$\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

for some $\rho \in [-1, 1]$.

- (a) For a fixed $\rho_* \in (0, 1)$, use Le Cam's method to derive a minimax lower bound for testing the null hypothesis $\rho = 0$ against the alternative hypothesis $|\rho| > \rho_*$.
- (b) For a given constant $c \in (0, 1)$, what is largest value of ρ_* such that, according to your lower bound, every test has worst-case error probability at least c?

Hint: The KL divergence between Gaussians $\mathcal{N}(0, \Sigma_0)$ and $\mathcal{N}(0, \Sigma_1)$ over \mathbb{R}^2 is

$$D_{KL}(\mathcal{N}(0,\Sigma_0),\mathcal{N}(0,\Sigma_1)) = \frac{1}{2} \left(\log \frac{|\Sigma_0|}{|\Sigma_1|} - 2 + tr(\Sigma_0^{-1}\Sigma_1) \right),$$

where $|\Sigma| = \Sigma_{1,1}\Sigma_{2,2} - \Sigma_{1,2}\Sigma_{2,1}$ and $tr(\Sigma) = \Sigma_{1,1} + \Sigma_{2,2}$ denote the determinant and trace of Σ .

This space is intentionally blank. You may use it for scratch work.

Please do not mark below this line.

Problem	Max	Points
S1	8	
S2	5	
S3	7	
S4	5	
S5	5	
L1	10	
L2	10	
Total	50	