
10-704 Homework 1
Due: Thursday 2/5/2015

Instructions: Turn in your homework in class on Thursday 2/5/2015

1. Information Theory Basics and Inequalities C&T 2.47, 2.29

(a) A deck of n cards in order 1, 2, . . . , n is given to you. You remove one card at
random and then place it again at one of the n available positions at random.
What is the entropy of the resulting deck?

Solution: There are n choices for the card you select and n choices for where
the card is placed in the deck. If you choose the ith card and place it back in its
original location, then you arrive at the original sequence. Therefore the original
sequence occurs with probability 1/n.

There are n − 1 outcomes that each occur with probability 2/n2. These are the
outcomes where two adjacent items in the list are swapped (i.e. (2, 1, 3, 4)).

The remaining outcomes occur with probability 1/n2 and there are n2−n−2(n−
1) = (n− 1)(n− 2).

The entropy is therefore:
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n
log n+

2(n− 1)

n2
log

n2

2
+

(n− 1)(n− 2)

n2
log n2

(b) Let X, Y, Z be joint random variables. Prove the following inequalities and iden-
tify conditions for equality.

i. H(X, Y |Z) ≥ H(X|Z)

ii. I(X, Y ;Z) ≥ I(X;Z)

iii. H(X, Y, Z)−H(X, Y ) ≤ H(X,Z)−H(X)

iv. I(X;Z|Y ) ≥ I(Z;Y |X)− I(Z;Y ) + I(X;Z)

Solution:

i.

H(X, Y |Z) = H(X|Z) +H(Y |X,Z) ≥ H(X|Z)

since entropy is non-negative. This inequality is tight when H(Y |X,Z) is
zero, or conditionally on both X,Z the value of Y is deterministic

ii.

I(X, Y ;Z) = H(X, Y )−H(X, Y |Z) = H(X) +H(Y |X)−H(X|Z)−H(Y |X,Z)

= I(X;Z) +H(Y |X)−H(Y |X,Z) ≥ I(X;Z)

The last inequality follows since conditioning cannot reduce entropy. This
inequality is tight when Y ⊥ Z|X.
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iii. By the chain rule, the left hand side is H(Z|X, Y ) while the right hand side is
H(Z|X). The inequality follows since conditioning does not reduce entropy.
It is tight when Z ⊥ Y |X.

iv. Notice that:

I(X;Z|Y )− I(Y ;Z|X) = H(Z|Y )−H(Z|X, Y )−H(Z|X) +H(Z|X, Y )

= H(Z|Y )−H(Z|X)

while:

I(X;Z)− I(Y ;Z) = H(Z)−H(Z|X)−H(Z) +H(Z|Y ) = H(Z|Y )−H(Z|X)

So this inequality is always an equality.

(c) Consider a distribution on {1, . . . ,m} with P(X = i) = pi. We will assume p1 ≥
p2 ≥ · · · ≥ pm. Let p = [p1, . . . , pm]. Since X = 1 is the most likely assignment,

the minimal probability of error predictor of X is X̂ = 1 with probability of error
Pe = 1 − p1. Maximize H(p) subject to the constraint 1 − p1 = Pe to find a
bound on Pe in terms of the entropy. This is Fano’s inequality in the absence of
conditioning.

Solution: We will maximize H(p) = −
∑
pi log pi subject to 1 − p1 = Pe and∑

i pi = 1. The first constraint can be handled by substituting p1 = 1 − Pe and
for the second constraint we will optimize the Lagrangian.

L(p, λ) = −
m∑
i=2

pi log pi − (1− Pe) log(1− Pe) + λ

(
(1− Pe) +

m∑
i=2

pi − 1

)

The derivative with respect to pi (i 6= 1) is:

∂L(p, λ)

∂pi
= 1− log pi + λ = 0⇒ pi = exp(1 + λ)

Setting the derivative with respect to λ equal to zero, implies that
∑m

i=2 pi = Pe,
and this means:

m∑
i=2

exp(1 + λ) = Pe ⇒ λ = log(Pe/(m− 1))− 1

So that pi = Pe/(m− 1). This means:

H(p) ≤ −(1− Pe) log(1− Pe) + Pe log

(
m− 1

Pe

)
= H(Pe) + Pe log(m− 1)

which is Fano’s inequality without conditioning.
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2. Estimation of Entropy Functionals In class we mentioned that there are no prac-
tical unbiased estimators for entropy functionals. One can however design an unbiased
estimator if you are allowed to choose a set of samples of arbitrary but finite size.
The problem is that there is no a priori bound on the sample size. In this question
we will develop and analyze these estimators for the discrete setting. Let X1, X2, . . .
denote a sequence of samples from a discrete distribution P with symbols C1, . . . , Ck

and probabilities (p1, . . . , pk).

(a) For 1 ≤ i ≤ k, let Ni denote the smallest j ≥ 1 for which Xj = Ci. Show that:

Ĥ1 =
k∑

i=1

1[Ni ≥ 2]

Ni − 1
(1)

is an unbiased estimator for the entropy H(P ) = −
∑k

i=1 pi log pi.

Solution: Notice that the marginal distribution Ni is a geometric distribution,
so that P[Ni = j] = pi(1− pi)j−1.

EĤ1 =
k∑

i=1

E
1[Ni ≥ 2]

Ni − 1
=

k∑
i=1

∞∑
j=2

pi(1− pi)j−1

j − 1

=
k∑

i=1

pi

∞∑
j=2

(1− pi)j−1

j − 1
=

k∑
i=1

pi

∞∑
j=1

(1− pi)j

j

= −
k∑

i=1

pi log pi

The last line follows from the expansion: log(1− x) = −
∑∞

j=1 x
j/j.

(b) Design an unbiased estimator based on pairing each of the first n samples with

the next sample in the sequence with the same symbol. The identity log(1−x)
1−x =

−
∑∞

i=1 hix
i where hi =

∑i
j=1

1
j

is the ith harmonic number will be useful.

Solution: For each of the first n samples i ∈ [n], let ωi be the smallest j ≥ i such
that Xi and Xj+1 are the same symbol. Define:

Ĥ =
1

n

n∑
i=1

hωi−1

By linearity of expectation, it is sufficient to analyze a single term in this sum-
mation, say the first term.

EĤ = Ehω1−1 =
k∑

i=1

P[X1 = Ci]E[hω1−1|X1 = Ci]

=
k∑

i=1

pi

∞∑
j=1

hj−1pi(1− pi)j−1 = −
k∑

i=1

pi log pi
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This calculation uses the fact that conditional on the symbol of X1, ω1 is geomet-
rically distributed. The last step follows from the identity.

(c) Describe how to estimate the KL divergence D(p||q) using the first-order Von-
Mises Expansion approach.

Solution: Let p̂ and q̂ denote kernel density estimators for p and q using the first
half of the sample (say we are given n samples from each distribution {Xi}n1 , {Yj}nj=1).
The first order Von Mises expansion is:

D(p||q) =

∫
p(x) log

p(x)

q(x)

=

∫
p̂(x) log

p̂(x)

q̂(x)
dx+

∫ (
log

p̂(x)

q̂(x)
+ 1

)
(p(x)− p̂(x)) dx+

∫ (
− p̂(x)

q̂(x)

)
(q(x)− q̂(x))dx

+O
(
‖p− p̂‖22 + ‖q − q̂‖22

)
=

∫
p(x) log

p̂(x)

q̂(x)
dx−

∫
q(x)

p̂(x)

q̂(x)
dx+ 1 +O

(
‖p− p̂‖22 + ‖q − q̂‖22

)

The estimator is based on replacing the two integrals with expectations over the
second half of the sample:

D̂(p||q) = 1 +
1

n/2

n∑
i=n/2+1

log

(
p̂(Xi)

q̂(Xi)

)
+

1

n/2

n∑
j=n/2+1

(
p̂(Yj)

q̂(Yj)

)
3. Submodular Feature Selection Here we study the problem of trying to predict a

random variable Z given a collection of random variables X1, . . . , Xp (called features).
The goal of feature selection is to find a small subset of the features that predict Z
well.

(a) Show that the mutual information functional f(S) = I(Z;Xs, s ∈ S) is not sub-
modular. This provides evidence that greedy maximization of the mutual infor-
mation functional may not be a good way to do feature selection.

Solution: Many solutions are possible and we give just one example. Consider
the following set of four random variables X1, X2, X3 are bernoulli with probability
p = 1/2 and Z = 1[X1 = X2]. Notice that Z is independent of X3. Notice also
that marginally Z is bernoulli with probability 1/2, but Z is also uniform bernoulli
conditioned on either of X1 or X2. In particular p(Z = a,Xj = b,X3 = c) = 1/8
for j = 1, 2 and for a, b, c ∈ {0, 1}. The following are immediate:

I(Z;X3) = 0

I(Z; (X1, X3)) = I(Z; (X2, X3)) = 0

I(Z; (X1, X2, X3)) = H(Z)−H(Z|X1, X2, X3) = log 2
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Therefore:

I(Z; (X1, X3))− I(Z;X3) = 0 < I(Z; (X1, X2, X3))− I(Z; (X1, X3)) = log 2 = 1bit.

which shows that the functional is not submodular.

(b) Show that in the naive bayes model, greedy maximization of mutual information
is possible. The naive bayes model posits that Xi ⊥ Xj|Z for all i 6= j so the
distribution factors as P (Z,X1, . . . , Xp) = P (Z)

∏p
i=1 P (Xi|Z).

Solution: We need to show that the mutual information functional is submodular
in this case. Using the independence properties of the naive bayes model we have:

I(Z;XS) = H(XS)−H(XS|Z)−H(XS)−
∑
i∈S

H(Xi|Z)

Let S ⊂ [p] be any subset of the features, and let i, j /∈ S.

I(Z;XS, Xi)− I(Z;XS) = H(XS, Xi)−H(XS)−H(Xi|Z)

I(Z;XS, Xi, Xj)− I(Z;XS, Xj) = H(XS, Xi, Xj)−H(XS, Xj)−H(Xi|Z)

This last equality uses the Naive-Bayes assumption, that Xi and Xj are indepen-
dent conditioned on Z. The difference between the two of these is:

I(Z;XS, Xi)− I(Z;XS)− (I(Z;XS, Xi, Xj)− I(Z;XS, Xj))

= H(XS, Xi)−H(XS)−H(XS, Xi, Xj) +H(XS, Xj)

= H(Xi|XS)−H(Xi|Xj, XS) ≥ 0

The last inequality follows since conditioning does not reduce entropy. Since this
holds for any S, i, j, this shows that the functional is submodular.
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