
10-704 Information Processing & Learning
Quiz 2 Solutions April 28th 2015

Short Questions

(5 Points × 8 = 40 Points)

1. We wish to encode a dictionary of 5 symbols {a, b, c, d, e} using a ternary alphabet {0, 1, 2}. Identify the
following 5 codes as S: Singular, NS: Nonsingular but not uniqely decodable, UD: Uniquely decodable
but not instantaneous, and I: Instantaneous

(a) {0, 1, 2, 0, 1}

(b) {01, 10, 11, 02, 2}

(c) {0, 1, 11, 21, 02}

(d) {0, 21, 02, 2, 21}

(e) {000, 1112, 1111, 2222, 2221}

2. Let Y = X1 + X2 where X1, X2 are not necessarily indepdendent and satisfy EX2
i ≤ P for i = 1, 2.

Find the maximum entropy of Y .
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3. State True/ False.

(a) The Jeffrey’s prior is invariant to reparametrization.

(b) Reference priors are invariant to reparametrization in one dimension but not in more than one
dimension.

(c) The redundancy-capacity theorem tells us that the reference prior is the worst-case prior achieving
minimax risk in learning a parameter θ from data X.

4. The exponential family of distributions parametrized by θ is characterized via the pdf

pθ(x) = h(x) exp

(
s∑

k=1

ηk(θ)Tk(x)−B(θ)

)

You have n samples {X1, . . . , Xn}, from the above distribution. Indicate whether the following statistics
are sufficient ? (You may circle the sufficient statistics.)

(a) {X1, . . . , Xn}

(b) {
∑n
i=1 T1(Xi), . . . ,

∑n
i=1 Ts(Xi)}

(c) {
∑n
i=1

∑s
k=1 Tk(Xi)}

(d) {
∏n
i=1 h(Xi),

∑n
i=1 T1(Xi), . . . ,

∑n
i=1 Ts(Xi)}

(e) {
∏n
i=1 h(Xi),

∑n
i=1

∑s
k=1 Tk(Xi)}

5. Consider the density given below. Note that this is the Γ(2, θ) distribution.

pθ(x) =
1

2θ2
x exp

(
−x
θ

)
1(x > 0)

What is the Cramer-Rao lower bound on the variance of any unbiased estimator for θ.
Hint: The mean of a Γ(α, β) distribution is αβ.
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6. Consider the distribution p = {1/2, 1/4, 1/8, 1/8} on symbols {a, b, c, d}. What is the Shannon-Fano-
Elias Code for the sequence acb when each symbol is drawn i.i.d from p ?

7. Let V = {−1, 1}d, and let θ(v) = v. Which of the following losses satisfy the decomposability require-
ment for Assouad’s Method? You may circle your answers.

(a) Squared loss: l(θ, θ′) = ‖θ − θ′‖22.

(b) `1 loss: l(θ, θ′) = ‖θ − θ′‖1.

(c) `∞ loss l(θ, θ′) = maxj∈[d] |θj − θ′j |.

8. Given n i.i.d. samples Xi ∈ {+1,−1} from a distribution P ∼ Bernoulli(1/2), Sanov’s theorem states
that P (

∑n
i=1Xi > n/2) decays asymptotically as which of the following:

(a) 2−nD((3/4,1/4)‖(1/2,1/2))

(b) 2−nD((3/4,1/4)‖(1/4,3/4))

(c) 2−nD((1/2,1/2)‖(3/4,1/4))
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Solutions

1. (a) S

(b) I

(c) NS

(d) S

(e) I

2. Noting that V(Y ) = V(X1) + V(X2) + 2Cov(X1, X2) ≤ V(X1) + V(X2) + 2
√

V(X1)V(X2) ≤ 4P .
Therefore H(Y ) ≤ 1

2 log(8πeP ). This upper bound is achievable when X1 = X2 and is sampled from
N (0, P ).

3. (a) T

(b) F

(c) T

4. (a), (b) and (d)

5. θ2/2

6. 0110101

7. (a) Yes

(b) Yes

(c) No

8. Ans: (a)
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Long Questions

1. (5+10+5 Points) Rate Distortion and Identifying Anomalies

In this problem, you will pose the problem of identifying anomalous points as a rate-distortion problem.
Consider data X that we would like to map to T such that T is w if data X is “non-anomalous” (similar
to other data points) and X if X is “anomalous” (different from other data points). Here, w is a fixed
value indicating that the data was non-anomalous. You may assume that the distribution of X is
known.

(a) Pose it as a rate-distortion problem where the distortion is ‖X − T‖2.

(b) Write down the iterative steps in Blahut-Arimoto algorithm for finding the rate-distortion function
starting from a guess of initial probabilities p(0)(T = w) and p(0)(T = x). You don’t need to derive
it from scratch. At iteration i = 1, 2, . . . ,

p(i)(T = w|X = x) =

p(i)(T = x|X = x) =

Then update

p(i)(T = w) =

p(i)(T = x) =

(c) Show that the optimal value of w corresponds to the expectation of X conditioned on it being
mapped to non-anomalous.
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Solution

(a) minp(t|x) I(X,T ) s.t. E[||X − T ||2] ≤ D

(b) p(i)(T = w|X = x) ∝ p(i−1)(T = w)e−β‖x−w‖
2

p(i)(T = x|X = x) ∝ p(i−1)(T = x)

Then update
p(i)(T = w) =

∑
x p

(i)(T = w|X = x)p(x)
p(i)(T = x) = p(i)(T = x|X = x)p(x)

(c) ∂
∂wE[‖X − T‖2] = ∂

∂w

∑
x ‖x − w‖2p(t = w|x)p(x) = −

∑
x 2(x − w)p(t = w|x)p(x) = 0. This

implies

w =

∑
x xp(t = w|x)p(x)∑
x p(t = w|x)p(x)

=
∑
x

xp(x|t = w)

i.e. it corresponds to the expectation of X conditioned on it being mapped to non-anomalous.

Here is an alternative solution,

E‖X − T‖2 =

∫
A

(x− w)2p(x)

∂

∂w
E‖X − T‖2 =

∂

∂w

∫
A

‖X − w‖2p(x) =⇒ w =

∫
A
xp(x)

p(A)
= E[X|X ∈ A]

Here A is the non-anomalous region. The calculation assumes that A is known.

2. (10+10 Points) Channel Capacity

(a) Consider the additive channel below, where X ∈ X = {−2,−1, 0, 1, 2} and the output is Y =
X + Z. Z is noise uniformly distributed over [−1, 1] and is independent of X.

Calculate the capacity C = maxp(x) I(X;Y ) of this channel and describe the distribution p(x)
used to achieve that capacity.

(b) Now consider the following channel where the output is Y = V X + Z where V , Z are random
variables independent of X. All X,Y, V and Z are scalars.

Let the capacity of the channel when V is known be CV = maxp(x) I(X;Y |V ) and when V is
unknown be C = maxp(x) I(X;Y ). Prove that CV ≥ C.
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Solution

(a) Write I(X;Y ) = H(Y ) − H(Y |X) = H(Y ) − 1 bits. Since Y is a distribution over [−3, 3] its
entropy is at most log 6 bits achieved by a uniform distribution. This can be achieved via the
prior {1/3, 0, 1/3, 0, 1/3}. Hence, C = log 3 bits.

(b) For this, we write the mutual information I(X;V, Y ) in two ways via the chain rule,

I(X;V, Y ) = I(X;V ) + I(X;Y |V ) = I(X;Y ) + I(X;V |Y )

As I(X;V ) = 0 due to independence we have I(X;Y |V ) ≥ I(X;V ). The statement follows.

3. (20 pts) Consider the following simple model for similarity based clustering. There are n objects and
they are partitioned into two sets of size n/2. Call one of the sets S, so that the other is SC .

You observe an n× n matrix M with Mij ∼ N (γ, 1) if i, j ∈ S or i, j ∈ SC and with Mij ∼ N (−γ, 1)
otherwise. Given this matrix, you would like to recover the set S and the set SC .

An estimator T outputs two sets (A,B) and we say that (A,B) = (A′, B′) if either A = A′ and B = B′

or A = B′ and B = A′. This just means that the clustering found by T agrees with the true clustering.

Show that the minimax risk:

inf
T

sup
S⊂{1,...,n},|S|=n/2

PS [T (M) 6= (S, SC)],

is lower bounded by a constant when γ ≤ c
√

log(n)
n . You need not explicitly track the constant factors

in your calculations.

Hint: Use Fano’s Inequality. Fix one partition (S, SC) of n/2 objects in each cluster and an element
i ∈ S. Consider a discretization of the hypothesis space that includes this clustering along with all n/2
clusterings based on swapping element i with an element from SC .

Solution: Fix (S0, S
C
0 ) to be a clustering where each set has n/2 elements. Fix one element i in

S0 and for each element j ∈ SC0 let Sj be the clustering that swaps i and j. Clearly there are n/2 such
alternatives, and each one disagrees with (S0, S

C
0 ) on Θ(n) similarities.

The KL is Θ(nγ2) and the entropy is Θ(log(n)) so by Fano’s inequality:

Pe ≥ 1− cnγ
2 + log 2

log n

which is bounded away from zero when γ ≤
√

logn
n .
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