SCHEDULE:
|
|
Sept 1
|
The Benefit of Group Sparsity (arXiv)
Authors: Junzhou Huang, Tong Zhang
Presenter: Min Xu
|
Sept 8
|
Neyman-Pearson classification, convexity and stochastic constraints (paper)
Authors: Philippe Rigollet and Xin Tong
Presenter: Sivaraman Balakrishnan
|
Sept 15
|
Calibrated Forecasters
Authors: Misc
Presenter: Aaditya Ramdas
|
Sept 22
|
Spectral Methods for Learning Multivariate Latent Tree Structure (arXiv)
Authors: Animashree Anandkumar, Kamalika Chaudhuri, Daniel Hsu, Sham M. Kakade, Le Song, Tong Zhang
Presenter: Ankur Parikh
|
Oct 6
|
High-dimensional regression with noisy and missing data: Provable
guarantees with non-convexity (arXiv)
Authors: Po-Ling Loh and Martin J. Wainwright
Presenter: Akshay Krishnamurthy
|
Oct 20
Note: 2:30-4:00 pm
|
Guest: Robert Tibshirani
|
Oct 27
|
Cross validation is risk consistent for lasso
Authors: Darren Homrighausen and Dan McDonald
Presenter: Darren Homrighausen and Dan McDonald
|
Nov 3
|
Presenter: Martin Azizyan
|
Nov 10
|
Presenter: James Sharpnack
|
Nov 17
|
Approximation of Functions of Few Variables in High Dimensions (pdf)
Author: Ronald DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk
Presenter: Ina Fiterau
|