Statistical Machine Learning Reading Group

Carnegie Mellon University

Room: Currently Rotating Rooms

Time: 10:30 am-12:00 pm Monday


SCHEDULE:

Jan 23 Minimax Rates of Estimation for Sparse PCA in High Dimensions
Authors: V. Vu, J. Lei
Presenter: Vince Vu

Jan 30 Simpler Approach To Matrix Completion (arXiv)
Authors: B. Recht
Presenter: Aaditya Ramdas

Feb 6 Variance estimation using refitted cross-validation in ultrahigh dimensional regression (arXiv)
Authors: J. Fan, S. Guo and N. Hao
Presenter: James Sharpnack

Feb 13 Noisy Independent Factor Analysis Model for Density Estimation and Classification (arXiv)
Authors: Umberto Amato, Anestis Antoniadis, Alexander Samarov, Alexander Tsybakov
Presenter: Larry Wasserman

Feb 20 Lower Bounds for Passive and Active Learning (here)
Authors: M. Raginsky and A. Rakhlin
Presenter: Steve Hanneke

Feb 27 Tight conditions for consistent variable selection in high dimensional nonparametric regression (arXiv)
Authors: Laetitia Comminges, Arnak Dalalyan
Presenter: Ina Fiterau

Mar 5 On Low-Dimensional Projections of High-Dimensional Distributions (arXiv)
Authors: Lutz Dumbgen, Perla Zerial
Presenter: Martin Azizyan

Mar 19 A Geometric Analysis of Subspace Clustering with Outliers (arXiv)
Authors: Mahdi Soltanolkotabi and Emmanuel J. Candes
Presenter: Sivaraman Balakrishnan

Mar 26 THE LASSO, CORRELATED DESIGN, AND IMPROVED ORACLE INEQUALITIES (arXiv)
Authors: Sara van de Geer and Johannes Lederer
Presenter: Mladen Kolar




Edit Here