
Regular Expressions
with a brief intro to FSM

15-123

Systems Skills in C and Unix

Case for regular expressions

• Many web applications require pattern

matching

– look for <a href> tag for links

– Token search– Token search

• A regular expression

– A pattern that defines a class of strings

– Special syntax used to represent the class

• Eg; *.c - any pattern that ends with .c

Formal Languages

• Formal language consists of
– An alphabet

– Formal grammar

• Formal grammar defines• Formal grammar defines
– Strings that belong to language

• Formal languages with formal semantics
generates rules for semantic specifications of
programming languages

Automaton

• An automaton (or automata in plural) is a

machine that can recognize valid strings

generated by a formal language.

• A finite automata is a mathematical model of • A finite automata is a mathematical model of

a finite state machine (FSM), an abstract

model under which all modern computers are

built.

Automaton

• A FSM is a machine that consists of a set of

finite states and a transition table.

• The FSM can be in any one of the states and

can transit from one state to another based on

a series of rules given by a transition function.

Example
What does this machine represents? Describe the kind of

strings it will accept.

Exercise

• Draw a FSM that accepts any string with even

number of A’s. Assume the alphabet is {A,B}

Build a FSM

• Stream: “Ilovecatsandmorecatsandbigcats ”

• Pattern: “cat”

Regular Expressions

Regex versus FSM

• A regular expressions and FSM’s are

equivalent concepts.

• Regular expression is a pattern that can be

recognized by a FSM. recognized by a FSM.

• Regex is an example of how good theory leads

to good programs

Regular Expression

• regex defines a class of patterns

– Patterns that ends with a “*”

• Regex utilities in unix

– grep, awk, sed

• Applications

– Pattern matching (DNA)

– Web searches

Regex Engine
• A software that can process a string to find regex

matches.

• Regex software are part of a larger piece of
software

– grep, awk, sed, php, python, perl, java etc..

• We can write our own regex engine that • We can write our own regex engine that
recognizes all “caa” in a strings

– See democode folder

• Different regex engines may not be compatible
with each other

– Perl 5 is a popular one to learn

Regex machines
• Perl can do a “decent” job with simple regex’s

• But it can fail in cases where expressions can

be of the form ____________

• One of the best regex machines was written in

C by Ken Thompson in the 70’sC by Ken Thompson in the 70’s

– 400 lines of C code

– Superior to perl, python and other

implementations when working with real world

applications

Unix grep utility

The grep command

Simple grep examples

• grep “<a href” guna.html > output.txt

• ls | grep “guna”

• grep ‘regex’ filename

• man grep• man grep

– For more info

regex grammer

Regular Expression Grammar

• Regex grammar defines a set of rules for

finding patterns. Grammar categories

– Alternation

– Grouping

– quantification

Regular Expression Grammar

• Alternation

• The vertical bar is used to describe alternating

choices among two or more choices.

– the notation a | b | c indicates that we can choose – the notation a | b | c indicates that we can choose

a or b or c as part of the string.

– Another example is that “(c|s)at” describes the

expressions “cat” or “sat”. n

Regular Expression Grammar

Grouping

Parenthesis can be used to describe the scope

and precedence of operators.

In the example above (c|s) indicates that we In the example above (c|s) indicates that we

can either begin with c or s but must

immediately follow by “at”

Regular Expression Grammar

• Quantification
– Quantification is the notation used to define the

number of symbols that could appear in the string.

• The most common quantifiers are
– ?, * and +– ?, * and +

– The ? mark indicates that there is zero or one of the
previous expression.

– The “*” indicates that zero or more of the previous
expression can be accepted.

– The “+” indicates that one or more of the previous
expression can be accepted.

Examples of *, ? , +

Other facts
• . matches a single character

• .* matches any string

• [a-zA-Z]* matches any string of alphabetic
characters

• [ag].* matches any string that starts with a or g•

• [a-d].* matches any string that starts with a,b,c or
d

• ^(ab) matches any string that begins with ab. In
general, to match all lines that begins with any
string use ^string

• (ab)$ matches any string that ends with ab

Finding non-matches

• To exclude a pattern

– [^class]

– Eg: [^0-9]

Group Matches

– grep ‘<h\([1-4]\)>.*h\([1-3]\)>’ filename

• What patterns match?

– grep ‘h\([1-4]\).*h\1’ filename

• Back-reference

Group Matches

Character Classes

• \d digit [0-9]

• \D non-digit [^0-9]

• \w word character [0-9a-z_A-Z]

• \W non-word character [^0-9a-z_A-Z] • \W non-word character [^0-9a-z_A-Z]

• \s a whitespace character [\t\n\r\f]

• \S a non-whitespace character [^ \t\n\r\f]

More regex notation

• {n,m} at least n but not more than m times

• {n,} – match at least n times

• {n} – match exactly n times

More examples of regex

• Find all files that begins with “guna”

• Find all files that does not begins with “guna”

• Find all files that ends with guna

• Find all directories in current folder. Write
them to an external file.

Exercise
• An email address must begin with an alpha character and can

have any combination of alpha characters and characters from

{0..9, %, _, +, -} followed by @ and a domain name {alpha-

numeric} followed by {.} and any token from the set {edu,

com, us, org, net}. Write a regex to describe this.

Summarized Facts about regex

• Two regular expressions may be

concatenated; the resulting regular expression

matches any string formed by concatenating

two substrings that respectively match the

concatenated sub expressions.concatenated sub expressions.

• Two regular expressions may be joined by the

infix operator | the resulting regular

expression matches any string matching either

sub expression

Summarized Facts about regex

• Repetition takes precedence over concatenation, which
in turn takes precedence over alternation. A whole sub
expression may be enclosed in parentheses to override
these precedence rules

• The backreference \n, where n is a single digit, matches • The backreference \n, where n is a single digit, matches
the substring previously matched by the nth
parenthesized sub expression of the regular
expression.

• In basic regular expressions the metacharacters ?, +, {,
|, (, and) lose their special meaning; instead use the
backslashed versions \?, \+, \{, \|, \(, and \).

Text Processing Languages

• awk
– Text processing language

– awk ‘/pattern/’ somefile

– awk '{if ($3 < 1980) print $3, " ",$5,$6,$7,$8}' somefile

• sed• sed
– A stream editor

– sed s/moon/sun/ < moon.txt >sun.txt

• Perl
– A powerful scripting language

– We will discuss this next

Basics of sedBasics of sed

sed basics

• sed is a stream editor

• > sed ‘s/guna/foo/’ filename

– Replaces guna by foo in the file

• first occurrence on each line

– output sent to stdout– output sent to stdout

• > sed ‘s/guna/foo/g’ filename

– Globally replaces guna by foo in the file

• If you have special characters {.*[]^$\ }

– Precede with \

– eg: sed ‘s/guna\[me\.him\]/foobar/g’ filename

sed basics

• Replacing more than one token

– sed -e ‘s/guna/foo/g’ -e ‘s/color/colour/g’

filename

• What if / is part of the string to replace?

– Replace all afs/andrew with afs/cs

– Solution: any character immediately following s is

the delimiter

– sed ‘s#afs/andrew#afs/cs’ filename

Basics of awkBasics of awk

Basics of awk
• Uses

– Use information from text files to create reports

– Translating files from one format to another

– Adding functionality to “vi”

– Mathematical operations on numeric files

• awk also has a basic interpreted programming • awk also has a basic interpreted programming
language

• Basic commands
– General form:

• awk ‘<search pattern> {<program actions>} ‘

– awk ‘/guna/ file -- prints all lines with guna

– awk ‘/guna/’ {print $1,$2,$3} ‘ file

– awk -F',' '{if ($5=="MCS") print $2}' roster.txt

exercises

• Download an index.html file from your

favorite website

– use wget

• Change all URL’s for example, www.cnn.com to • Change all URL’s for example, www.cnn.com to

www.foxnews.com

– use sed

Coding ExamplesCoding Examples

