
Shell Programming

15-123

Systems Skills in C and Unix

The Shell

• A command line interpreter that provides the

interface to Unix OS.

What Shell are we on?

• echo $SHELL

• Most unix systems have

– Bourne shell (sh)

• No command history• No command history

– Korn shell (ksh)

• Shell functions

– C shell (csh)

• History, no shell functions
• More details at unix.com

What’s Shell good for?
• Starting and stopping processes

• Controlling the terminal

• Interacting with unix system

• Solving complex problems with simple scripts

– Life saver for system administrators– Life saver for system administrators

• What is a “shell script” ?

– A collection of shell commands supported by
control statements

– Shell scripts are interpreted and instructions
executed

Quick review of basics

A Shell Script

#!/bin/sh

-- above line should always be the first line in your script

A simple script

who am Iwho am I

Date

• Execute with: sh first.sh

Another shell script

Command Line Arguments

• $# - represents the total number of arguments

(much like argv) – except command

• • $0 - represents the name of the script, as invoked

• • $1, $2, $3, .., $8, $9 - The first 9 command line • • $1, $2, $3, .., $8, $9 - The first 9 command line

arguments

– Use “shift” command to handle more than 9 args

• • $* - all command line arguments OR

• • $@ - all command line arguments

What are the three kinds of quotes in

Shell expressions?

Capturing output from a shell

operation

A major bug: Did not catch if the program seg faulted

Control Statements – Loops and conditionals

Useful shell commands

• Shell already has a collection of rich
commands

• Some Useful commands

– uptime, cut, date, cat, finger, hexdump, man,
md5sum, quota, md5sum, quota,

– mkdir, rmdir, rm, mv, du, df, find, cp, chmod, cd

– uname, zip, unzip, gzip, tar

– tr, sed, sort, uniq, ascii

– Type “man command” to read about shell
commands

What do these shell commands do?
• cat dups.txt | sort | uniq

• cat somefile.txt | sed 's/|/,/g' > outfile

• cat somefile.txt | sed 's#|#,#g' > outfile

• cat somefile.txt | sed '1,10 s/|/,/g' > outfile

• cat somefile.txt | sed '1,$ s/|/,/g' > outfile• cat somefile.txt | sed '1,$ s/|/,/g' > outfile

• cat somefile.txt | sed '/^[0-9]+/ s/|/,/g' >
outfile

• cat file | cut -d: -f3,5

• cat file.txt | tr "abcd" "ABCD" > outfile.txt

More of those

• cat file.txt | tr "a-z" "A-Z" > outfile.txt

• cat file.txt | tr -d "\015" > outfile.txt

• cat somefile.txt | tr "\015" "\012" >

somefile.txtsomefile.txt

I/O

• File descriptors

– Stdin(0), stdout(1), stderror(2)

• Input/output from/to stdin/stdout

– read data

– echo $data

• redirecting

– rm filename 1>&2

Unix tools in shell scripts

• Shell scripts can include utilities such as

– grep

• Pattern matching

– sed– sed

• Stream editor

– awk

• Pattern scanning and processing

– Read more in notes and man pages

Interprocess communication

Inter Process Communication (IPC)

• Communication between processes

• Using Pipes

– Pipes is the mechanism for IPC

– ls | sort | echo– ls | sort | echo

• 4 processes in play

• Each call spans a new process

– Using folk

– More later about folk

Editing in Place

• cat somefile.txt | tr -d "\015" "\012" | fold >

somefile.txt

• What does it do?

• What are some of the problems?

• Problems are caused by the way pipes work

How does pipes work
• A finite buffer to allow communication

between processes

– Typically size 8K

• If input file is less than the buffer

We may be ok– We may be ok

• What if input file is more than the buffer

– Redirecting output to the same file is a bad idea

How to deal with this?

• Use a temp file

– cat file | tr -d "\015" "\012" | fold > file.tmp

– mv file.tmp file

• Better process

– cat file| tr -d "\015" "\012" | fold >

"/usr/tmp/file.$$"

– mv "/usr/tmp/file.$$" “file“

• /usr/tmp is cleared upon reboot

Pipes, Loops and Sub shells

#!/bin/sh

FILE=$1

cat $FILE |

while read value while read value

do

echo ${value}

done

• while loop is executed in a sub shell

What is the problem?
#!/bin/sh

FILE=${1}

max=0

cat ${FILE} |

while read value

do do

if [${value} -gt ${max}];

then

max=${value}

fi

done

echo ${max}

The fix
#!/bin/sh

FILE=${1}

max=0

values=`cat ${FILE}`

for value in ${values}

do if [${value} -gt ${max}]; do if [${value} -gt ${max}];

then

max=${value}

fi

done

echo ${max}

Arrays in bash
array[2]=23

array[3]=45

array[1]=4

To dereference an array variable, we can use, for example

echo ${array[1]}

Array elements need not be consecutive and some members of the array can

be left uninitialized. Here is an example of printing an array in bash. Note the

C style loop. Also note the spaces between tokens.

for ((i=1 ; i<=3 ; i++))

do

echo ${array[$i]}

done

Coding ExamplesCoding Examples

