
Molecular Sequence Algorithms, Spring 2004

Lecture 4: Set Matching and
Aho-Corasick Algorithm

Pekka Kilpeläinen

University of Kuopio

Department of Computer Science

BSA Lecture 4: Aho-Corasick matching – p.1/23

Exact Set Matching Problem

In an exact set matching problem we locate occurrences of
any pattern of a set P = fP1; : : : ; Pkg, in text T [1 : : : m℄

Let n =Pki=1 jPij. Exact set matching can be solved in timeO(jP1j+m+ � � � + jPkj+m) = O(n+ km)

by applying any linear-time exact matching k times

Aho-Corasick algorithm (AC) is a classic solution to exact set
matching. It works in time O(n+m+ z), where z is number
of pattern occurrences in T

(The exposition is mainly based on [Aho and Corasick, 1975])

AC is based on a refinement of a keyword tree

BSA Lecture 4: Aho-Corasick matching – p.2/23

Keyword trees

A keyword tree (or a trie) for a set of patterns P is a rooted
tree K such that

1. each edge e of K is labeled by a character

2. any two edges out of a node have different labels

Define the label of a node v as the concatenation of edge
labels on the path from the root to v, denoted by L(v)

3. for each P 2 P there is a node v s.t. L(v) = P , and

4. for each leaf v we have some P 2 P with L(v) = P

BSA Lecture 4: Aho-Corasick matching – p.3/23

Example of a keyword tree

A keyword tree for P = fhe; she;his;hersg:

����- ����- ����-
����-
����- ����-

��������
����

����
- ZZZZ~JJJJJĴ

h e sr

s
s

h e

i

2

41

3

A keyword tree is an efficient implementation of a dictionary
of strings

BSA Lecture 4: Aho-Corasick matching – p.4/23

Keyword tree: Construction

Construction for P = fP1; : : : ; Pzg:
Begin with a root node only; Insert each pattern Pi, one
after the other:

Follow the path labeled by characters of Pi as long as
possible.

If Pi exhausts at node v, store an identifier of Pi at v

If the path terminates before Pi, continue the path by
adding new edges and nodes for the remaining
characters of Pi

Takes clearly O(jP1j+ � � � + jPzj) = O(n) time

BSA Lecture 4: Aho-Corasick matching – p.5/23

Keyword tree: Lookup

Lookup of a string P : Starting at root, follow the path
labeled by characters of P as long as possible.

If the path leads to a node with an identifier, P is a
keyword in the dictionary

If the path terminates before P , the string is not in the
dictionary

Takes clearly O(jP j) time; efficient as a look-up method

Naive application to pattern matching would lead to �(nm)

time

Next we extend a keyword tree into an automaton to support
linear-time matching

BSA Lecture 4: Aho-Corasick matching – p.6/23

Aho-Corasick automaton (1)

States: nodes of the keyword tree
initial state: root (denoted 0)

The action of the automaton is determined by three
functions defined for the states:

1. a goto function g(s; a) gives the state entered from
current state s by matching text char a

if edge (u; v) is labeled by a, then g(u; a) = v;g(0; a) = 0 for each a that does not label an edge
out of the root the automaton stays at the initial state while
scanning non-matching characters

BSA Lecture 4: Aho-Corasick matching – p.7/23

Aho-Corasick automaton (2)

2. a failure function f(s) gives the state entered at a
mismatch

When w is the longest proper suffix of L(s) s.t. w is
a prefix of some pattern, f(s) is the node labeled byw we do not miss any potential occurrence by a fail
transition

3. an output function out(s) gives the set of patterns
recognized when entering state s

BSA Lecture 4: Aho-Corasick matching – p.8/23

http://www.cs.uku.fi/~kilpelai/

Example of an AC automaton

sr

s
s

e

0 1

6

2

3 4 5

7

8 9

{he}

{hers}

{his}

{he, she}

h

/={h, s}

i

e

h

Dashed: fail transitions; those not shown lead to the root

BSA Lecture 4: Aho-Corasick matching – p.9/23

Search using an AC automaton

q := 0; // initial state (root)
for i := 1 to m do

while g(q; T [i℄) = ; doq := f(q);q := g(q; T [i℄);
if out(q) 6= ; then print i, out(q);

endfor;

Example:

Search text “ ushers ” with the preceding automaton

BSA Lecture 4: Aho-Corasick matching – p.10/23

Efficiency of AC search

Theorem Searching text T [1 : : : m℄ with an AC automaton
takes time O(m+ z), where z is the number of pattern
occurrences

Proof. For each text char, we perform a goto, and possibly
a number of fail transitions.
Each goto either stays at the root, or the depth of the
current state (q) increases by 1 the depth of q is increased at most m times

Each fail moves q closer to the root the number of them
can be at most m

The z occurrences can be reported in O(z) time (say, as
pattern identifiers and start positions of occurrences)

BSA Lecture 4: Aho-Corasick matching – p.11/23

Constructing an AC automaton (I)

An AC automaton can be constructed in two phases

Phase I:

1. Construct the keyword tree for P

for each P 2 P added to the tree, if v is the node
labeled by P , set out(v) := fPg

2. complete the goto function for the root by settingg(0; a) = 0

for each a 2 � not labeling an edge out of the root

If the alphabet is fixed, Phase I takes time O(n)
BSA Lecture 4: Aho-Corasick matching – p.12/23

Result of Phase I

sr

s
s

e

0 1

6

2

3 4 5

7

8 9

{he}

{hers}

{his}

{she}

h

/={h, s}

i

e

h

BSA Lecture 4: Aho-Corasick matching – p.13/23

Constructing an AC automaton (II)

Q := emptyQueue();
for a 2 � do

if q(0; a) = q 6= 0 thenf(q) := 0; enqueue(q, Q);
while not isEmpty(Q) dor:= dequeue(Q);

for a 2 � do

if g(r; a) = u 6= ; then

enqueue(u, Q); v := f(r);
while g(v; a) = ; do v := f(v);f(u) := g(v; a);
out(u) := out(u) [out(f(u));

What does this do?
BSA Lecture 4: Aho-Corasick matching – p.14/23

Idea of AC construction Phase II

Functions fail and output are computed for the nodes of the
trie in a breadth-first order when considering a node, nodes that are closer to the
root have been treated

Consider nodes r and u = g(r; a), that is, r is the parent ofu and L(u) = L(r)a

Now what should f(u) be?
A: The deepest node labeled by a proper suffix of L(u).
This is found by trying nodes labeled by shorter and
shorter suffixes of L(r), until a node v one is found for
which g(v; a) is defined and gets assigned to f(u).
(Note that v and g(v; a) may be the root.)

BSA Lecture 4: Aho-Corasick matching – p.15/23

Completing the output functions

What about out(u) := out(u) [out(f(u))?
This is done because any patterns recognized at f(u) (and
only those) are proper suffixes of L(u), and shall thus be
recognized at state u also.

BSA Lecture 4: Aho-Corasick matching – p.16/23

Efficiency of the AC construction (1)

Phase II can be implemented to run in time O(n), too:

The breadth-first traversal alone takes time proportional to
the size of the tree, which is O(n)

How much work is done for following f transitions (in the
inner-most loop)?

BSA Lecture 4: Aho-Corasick matching – p.17/23

AC construction: Number of fail
transitions

Consider the nodes u1; : : : ; ul on a path created by
entering a pattern a1 : : : al to the tree, and the depths of
their f nodes, denoted by df(u1); : : : ; df(ul)

Now df(ui+1) � df(ui) + 1, which means that the df values
can increase at most l times along the path. Now each
execution of v := f(v) decreases the value of df(u) by one
at least in total, at most l fail transitions (for a pattern of length l) the f links are followed, in total, at most n times

BSA Lecture 4: Aho-Corasick matching – p.18/23

AC construction: Unions of output
functions

Is it costly to unite output functions (that is, to perform
out(u) := out(u) [out(f(u)))?
No: The sets can be implemented as linked lists, and a
union thus in constant time

(Any patterns in out(f(u)) are shorter than L(u), which is
(possibly) the only member of out(u) before the
assignment)

BSA Lecture 4: Aho-Corasick matching – p.19/23

Biological applications

1. Matching against a library of known patterns

A Sequence-tagged-site (STS) is, roughly, a DNA string of
200-300 bases whose left and right ends occur only once
in the entire genome

ESTs (expressed sequence tags) are STSs that participate
in gene expression, and thus belong to genes

Hundreds of thousands of STSs and tens of thousands of
ESTs (by mid-90’s) are stored in databases, and used to
compare against new DNA sequences set matching in time independent of the number of
patterns is highly useful

BSA Lecture 4: Aho-Corasick matching – p.20/23

2. Matching with wild cards

Let � be a wild card that matches any single character

For example, ab��
� occurs at positions 2 and 8 ofxabv

abab
ax

A transcription factor is a protein that binds to specific
locations of DNA and regulates its transcription to RNA

Many transcription factors are separated into families
characterized by substrings with wild cards

Example: Signature for a common transcription factor of
Zinc Finger: C��C�������������H��H

BSA Lecture 4: Aho-Corasick matching – p.21/23

Matching with wild cards (2)

If the number of wild cards is bounded by a constant,
patterns with wild-cards can be matched in linear time by
counting occurrences of non-wild-card substrings of P :

Let P = fP1; : : : ; Pkg be the substrings of P separated by
wild-cards, and let l1; : : : ; lk be their start positions in P

1. for i := 1 to m do C[i℄ := 0;

2. Using AC, locate occurrences of patterns in P;
When an occurrence of Pi is found to start at position j

of T , increment C[j � li + 1℄ by one;

3. Report any i with C[i℄ = k as a start of an occurrence

BSA Lecture 4: Aho-Corasick matching – p.22/23

Complexity of AC-based wild-card
matching

Preprocessing: O(m+ n) (Pki=1 jPij � jP j = n)

Search: O(m+ z), where z is the number of occurrences

Each occurrence increments a cell of C by one, and each
cell is incremented at most k times there can be at most km occurrences
(= O(m) if k is bounded by a constant)

Theorem 3.5.1 If the number of wild-cards in pattern P is
bounded by a constant, exact matching with wild-cards can
be performed in time O(n+m)

BSA Lecture 4: Aho-Corasick matching – p.23/23

	Exact Set Matching Problem
	Keyword trees
	Example of a keyword tree
	Keyword tree: Construction
	Keyword tree: Lookup
	Aho-Corasick automaton (1)
	Aho-Corasick automaton (2)
	Example of an AC automaton
	Search using an AC automaton
	Efficiency of AC search
	Constructing an AC automaton (I)
	Result of Phase I
	Constructing an AC automaton (II)
	Idea of AC construction Phase~II
	Completing the output functions
	Efficiency of the AC construction (1)
	AC construction: Number of fail transitions
	AC construction: Unions of output functions
	Biological applications
	2. Matching with wild cards
	Matching with wild cards (2)
	Complexity of AC-based wild-card matching

