
A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 1

1. Subgraph Analysis

2. Propagation Methods

3. Latent Factor Models
a) Background

b) Normal Behavior

c) Abnormal Behavior

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Modeling
2

1

0

00

0

0

0

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Modeling
3

1

0

00

0

0

0

1

1 1

1

U
se
r

Page

Matrix M

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Modeling
4

1

0

00

0

0

0

1

1 1

1

U
se
r

Page

Matrix M

HITS
Authoritativeness �⃗� is first
eigenvector of MTM

Hubness 𝑢 is first
eigenvector of MMT

�⃗� = 𝑐𝑀'𝑀�⃗�

𝑢 = 𝑐𝑀𝑀'𝑢

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Modeling
5

1

0

00

0

0

0

1

1 1

1

U
se
r

Page

Matrix M

HITS
Authoritativeness �⃗� is first
eigenvector of MTM

Hubness 𝑢 is first
eigenvector of MMT

�⃗� = 𝑐𝑀'𝑀�⃗�

𝑢 = 𝑐𝑀𝑀'𝑢

What about the other eigenvectors?

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Modeling
6

1

0

00

0

0

0

1

1 1

1

U

V

≈

Σ

𝑈Σ𝑉' ≈ 𝑀

Singular Value Decomposition

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Modeling
7

1

0

00

0

0

0

1

1 1

1

U

V

≈

Σ

𝑈Σ𝑉' ≈ 𝑀
Hubness 𝑢

Authoritativeness �⃗�

Singular Value Decomposition

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Modeling
8

1

0

00

0

0

0

1

1 1

1

U

V

≈

Σ

𝑈Σ𝑉' ≈ 𝑀
Hubness 𝑢

Authoritativeness �⃗�

Σ contains normalization for 𝑢 and �⃗�

Singular Value Decomposition

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Factorization
9

0

00

0

0

0

1

1 1

1

U

V

≈
𝑈𝑉' ≈ 𝑀

Topics

What does each
eigenvector capture?

Each factor captures a
dense block in the matrix

CS

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Factorization
10

0

00

0

0

0

1

1 1

1

≈
𝑈𝑉' ≈ 𝑀

Topics

What does each
eigenvector capture?

Each factor captures a
dense block in the matrix

U

V

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Factorization
11

0

00

0

0

0

1

1 1

1

U

V

≈
𝑈𝑉' ≈ 𝑀

1

𝑢, - 𝑣. ≈ 𝑀,,.

1

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Factorization
12

0

00

0

0

0

1

1 1

1

U

V

≈
𝑈𝑉' ≈ 𝑀
𝑢, - 𝑣. ≈ 𝑀,,.

Topics

1 1

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Factorization
13

0

00

0

0

0

1

1 1

1

U

V

≈
𝑈𝑉' ≈ 𝑀
𝑢, - 𝑣. ≈ 𝑀,,.

Topics
.6 .2 .1 0 .8.5 .1 -.1 .3 .9 ≈ 1

1 1

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 14

1. Subgraph Analysis

2. Propagation Methods

3. Latent Factor Models
a) Background

b) Normal Behavior

c) Abnormal Behavior

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Completion
15

?

??

?

?

?

?

1

5 4

2

U

V

≈

1

Recommendation systems
predict missing entries

U
se
rs

Movies

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Completion
16

?

??

?

?

?

?

1

5 4

2

U

V

≈

1

Can’t find singular vectors
with missing entries. Instead,

min
3,4

5 (𝑀,,. − 𝑢, - �⃗�.)9
(,,.)∈;

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Completion
17

?

??

?

?

?

?

1

5 4

2

U

V

≈
Can’t find singular vectors

with missing entries. Instead,

min
3,4

5 (𝑀,,. − 𝑢, - �⃗�.)9
(,,.)∈;

1

Genres

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Completion
18

?

??

?

?

?

?

1

5 4

2

U

V

≈
Can’t find singular vectors

with missing entries. Instead,

min
3,4

5 (𝑀,,. − 𝑢, - �⃗�.)9
(,,.)∈;

.6 .8 0 0 .11.2 -.1 .5 .8 -.5 ≈ 1

1

Genres

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Matrix Completion
19

?

??

?

?

?

?

1

5 4

2

U

V

≈
Can’t find singular vectors

with missing entries. Instead,

1

Genres 𝑀<,,. = 𝑢, - �⃗�.

min
3,4

5 (𝑀,,. − 𝑀<,,.)9
(,,.)∈;

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Adding Latent Factors
20

Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009

?

??

?

?

?

?

1

5 4

2

U

V

≈

1

min
3,4

5 (𝑀,,. − 𝑀<,,.)9
(,,.)∈;

𝑀<,,. = 𝜇 + 𝑏, + 𝑏. + 𝑢, - �⃗�.

Consider additional factors:
• Dataset mean 𝜇
• Row (user) baseline 𝑏,
• Column (movie) baseline 𝑏.

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Adding Latent Factors
21

Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009

What if we know the time of the rating
(time of the edge being created)?

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Adding Latent Factors
22

Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009

Mean Rating by Date (Netflix)
“3 stars” input, may now indicate dissatisfaction by the same “3
stars” feedback. Similarly, it is known that user feedback is in-
fluenced by anchoring, where current ratings should be taken as
relative to other ratings given at the same short period. Finally, in
many instances systems cannot separate different household mem-
bers accessing the same account, even though each member has a
different taste and deserves a separate model. This creates a de
facto multifaceted meta-user associated with the account. A way to
get some distinction between different persons is by assuming that
time-adjacent accesses are being done by the same member (some-
times on behalf of other members), which can be naturally captured
by a temporal model that assumes a drifting nature of a customer.
All these patterns and the likes should have made temporal mod-

eling a predominant factor in building recommender systems. Non-
etheless, with very few exceptions (to be mentioned in Sec. 7), the
recommenders literature does not address temporal changes in user
behavior. Perhaps, because user behavior is composed of many
different concept drifts, all acting in a different timeframe and dif-
ferent directions, thus making common methodologies for dealing
with concept drift and temporal data less successful at this setup.
We are showing that capturing time drifting patterns in user behav-
ior is essential to improving accuracy of recommenders. This also
gives us hope that the insights from successful time modeling for
recommenders will be useful in other data mining applications.
Our test bed is a large movie rating dataset released by Netflix as

the basis of a well publicized competition [4]. This dataset com-
bines several merits for the task at hand. First, it is not a syn-
thetic dataset, but contains user-movie ratings by real paying Net-
flix subscribers. In addition, its relatively large size – above 100
million date-stamped ratings – makes it a better proxy for real life
large scale datasets, while putting a premium on computational ef-
ficiency. Finally, unlike some other dominant datasets, time effects
are natural and are not introduced artificially. Two interesting (if
not surprising) temporal effects that emerge within this dataset are
shown in Fig. 1. One effect is an abrupt shift of rating scale that
happened in early 2004. At that time, the mean rating value jumped
from around 3.4 stars to above 3.6 stars. Another significant effect
is that ratings given to movies tend to increase with the movie age.
That is, older movies receive higher ratings than newer ones. In
Sec. 6 we will return to these phenomena and use our temporal
modeling to shed some light on their origins.
The major contribution of this work is presenting a methodology

and specific techniques for modeling time drifting user preferences
in the context of recommender systems. The proposed approaches
are applied on the aforementioned extensively analyzed movie rat-
ings dataset, enabling us to firmly compare our methods with those
reported recently. We show that by incorporating temporal infor-
mation we achieve best results reported so far, indicating the sig-
nificance of uncovering temporal effects.
The rest of the paper is organized as follows. In the next section

we describe basic notions and notation. Then, in Sec. 3 our prin-
ciples for addressing time changing user preferences are evolved.
Those principles are then materialized, in quite different ways, within
two leading recommender techniques: factor modeling (Sec. 4) and
item-item neighborhhod modeling (Sec. 5). In Sec. 6 we describe
an exploratory study, followed by surveying related work in Sec. 7.

2. PRELIMINARIES
We are given ratings aboutm users (henceforth, interchangeable

with “customers”) and n items (henceforth, interchangeable with
“products”). We reserve special indexing letters for distinguishing
users from items: for users u, v, and for items i, j. We use t for
time (or, date). A rating rui(t) indicates the preference by user u
of item i at day t, where high values mean stronger preferences.

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 500 1000 1500 2000 2500

m
ea

n
sc

or
e

time (days)

Rating by date

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 500 1000 1500 2000 2500

m
ea

n
sc

or
e

movie age (days)

Rating by movie age

Figure 1: Two temporal effects emerging within the Netflix
movie rating dataset. Top: the average movie rating made a
sudden jump in early 2004 (1500 days since the first rating in
the dataset). Bottom: ratings tend to increase with the movie
age at the time of the rating. Here, movie age is measured by
the time span since its first rating event within the dataset. In
both charts each point averages 100,000 rating instances.

For example, values can be integers ranging from 1 (star) indicat-
ing no interest to 5 (stars) indicating a strong interest. User u rates
item i at most once, otherwise we take only the freshest rating, so
given u and i, the day of rating is unique. Sometimes, when the day
of rating is not relevant, we will use the short notation rui. We dis-
tinguish predicted ratings from known ones, by using the notation
r̂ui(t) for the predicted value of rui(t). Usually the vast major-
ity of ratings are unknown. The (u, i, t) triples for which rui(t) is
known are stored in the set K = {(u, i, t) | rui(t) is known}.
We evaluated our algorithms on a movie rating dataset of more

than 100 million date-stamped ratings performed by about half mil-
lion anonymous Netflix customers on 17,770 movies between Dec
31, 1999 and Dec 31, 2005 [4]. We are not aware of any publicly
available comparable dataset that is close to the scope and qual-
ity of this one. To maintain compatibility with results published
by others, we adopted some common standards. We evaluated our
methods on two comparable sets designed by Netflix: a hold-out
set (“Probe set”) and a test set (“Quiz set”), each of which contains
over 1.4 million ratings. Reported results are on the test set, while
experiments on the hold-out set show the same findings. In our
time-modeling context, it is important to note that the test instances
of each user come later in time than his/her training instances.
The quality of the results is measured by their root mean squared
error (RMSE):

√

∑

(u,i)∈TestSet(rui − r̂ui)2/|TestSet|, a mea-
sure that puts more emphasis on large errors compared with the al-
ternative of mean absolute error. Achievable RMSE values on the
test set lie in a quite compressed range, as reported by many partici-

Mean
Score

Time (days)

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Adding Latent Factors
23

Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009

Mean Rating by Movie Age (Netflix)

Movie Age (days)

“3 stars” input, may now indicate dissatisfaction by the same “3
stars” feedback. Similarly, it is known that user feedback is in-
fluenced by anchoring, where current ratings should be taken as
relative to other ratings given at the same short period. Finally, in
many instances systems cannot separate different household mem-
bers accessing the same account, even though each member has a
different taste and deserves a separate model. This creates a de
facto multifaceted meta-user associated with the account. A way to
get some distinction between different persons is by assuming that
time-adjacent accesses are being done by the same member (some-
times on behalf of other members), which can be naturally captured
by a temporal model that assumes a drifting nature of a customer.
All these patterns and the likes should have made temporal mod-

eling a predominant factor in building recommender systems. Non-
etheless, with very few exceptions (to be mentioned in Sec. 7), the
recommenders literature does not address temporal changes in user
behavior. Perhaps, because user behavior is composed of many
different concept drifts, all acting in a different timeframe and dif-
ferent directions, thus making common methodologies for dealing
with concept drift and temporal data less successful at this setup.
We are showing that capturing time drifting patterns in user behav-
ior is essential to improving accuracy of recommenders. This also
gives us hope that the insights from successful time modeling for
recommenders will be useful in other data mining applications.
Our test bed is a large movie rating dataset released by Netflix as

the basis of a well publicized competition [4]. This dataset com-
bines several merits for the task at hand. First, it is not a syn-
thetic dataset, but contains user-movie ratings by real paying Net-
flix subscribers. In addition, its relatively large size – above 100
million date-stamped ratings – makes it a better proxy for real life
large scale datasets, while putting a premium on computational ef-
ficiency. Finally, unlike some other dominant datasets, time effects
are natural and are not introduced artificially. Two interesting (if
not surprising) temporal effects that emerge within this dataset are
shown in Fig. 1. One effect is an abrupt shift of rating scale that
happened in early 2004. At that time, the mean rating value jumped
from around 3.4 stars to above 3.6 stars. Another significant effect
is that ratings given to movies tend to increase with the movie age.
That is, older movies receive higher ratings than newer ones. In
Sec. 6 we will return to these phenomena and use our temporal
modeling to shed some light on their origins.
The major contribution of this work is presenting a methodology

and specific techniques for modeling time drifting user preferences
in the context of recommender systems. The proposed approaches
are applied on the aforementioned extensively analyzed movie rat-
ings dataset, enabling us to firmly compare our methods with those
reported recently. We show that by incorporating temporal infor-
mation we achieve best results reported so far, indicating the sig-
nificance of uncovering temporal effects.
The rest of the paper is organized as follows. In the next section

we describe basic notions and notation. Then, in Sec. 3 our prin-
ciples for addressing time changing user preferences are evolved.
Those principles are then materialized, in quite different ways, within
two leading recommender techniques: factor modeling (Sec. 4) and
item-item neighborhhod modeling (Sec. 5). In Sec. 6 we describe
an exploratory study, followed by surveying related work in Sec. 7.

2. PRELIMINARIES
We are given ratings aboutm users (henceforth, interchangeable

with “customers”) and n items (henceforth, interchangeable with
“products”). We reserve special indexing letters for distinguishing
users from items: for users u, v, and for items i, j. We use t for
time (or, date). A rating rui(t) indicates the preference by user u
of item i at day t, where high values mean stronger preferences.

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 500 1000 1500 2000 2500

m
ea

n
sc

or
e

time (days)

Rating by date

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 500 1000 1500 2000 2500

m
ea

n
sc

or
e

movie age (days)

Rating by movie age

Figure 1: Two temporal effects emerging within the Netflix
movie rating dataset. Top: the average movie rating made a
sudden jump in early 2004 (1500 days since the first rating in
the dataset). Bottom: ratings tend to increase with the movie
age at the time of the rating. Here, movie age is measured by
the time span since its first rating event within the dataset. In
both charts each point averages 100,000 rating instances.

For example, values can be integers ranging from 1 (star) indicat-
ing no interest to 5 (stars) indicating a strong interest. User u rates
item i at most once, otherwise we take only the freshest rating, so
given u and i, the day of rating is unique. Sometimes, when the day
of rating is not relevant, we will use the short notation rui. We dis-
tinguish predicted ratings from known ones, by using the notation
r̂ui(t) for the predicted value of rui(t). Usually the vast major-
ity of ratings are unknown. The (u, i, t) triples for which rui(t) is
known are stored in the set K = {(u, i, t) | rui(t) is known}.
We evaluated our algorithms on a movie rating dataset of more

than 100 million date-stamped ratings performed by about half mil-
lion anonymous Netflix customers on 17,770 movies between Dec
31, 1999 and Dec 31, 2005 [4]. We are not aware of any publicly
available comparable dataset that is close to the scope and qual-
ity of this one. To maintain compatibility with results published
by others, we adopted some common standards. We evaluated our
methods on two comparable sets designed by Netflix: a hold-out
set (“Probe set”) and a test set (“Quiz set”), each of which contains
over 1.4 million ratings. Reported results are on the test set, while
experiments on the hold-out set show the same findings. In our
time-modeling context, it is important to note that the test instances
of each user come later in time than his/her training instances.
The quality of the results is measured by their root mean squared
error (RMSE):

√

∑

(u,i)∈TestSet(rui − r̂ui)2/|TestSet|, a mea-
sure that puts more emphasis on large errors compared with the al-
ternative of mean absolute error. Achievable RMSE values on the
test set lie in a quite compressed range, as reported by many partici-

Mean
Score

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Adding Latent Factors
24

Collaborative Filtering with Temporal Dynamics
Yehuda Koren
KDD 2009

?

??

?

?

?

?

1

5 4

2

U

V

≈

5

min
3,4

5 (𝑀,,. − 𝑀<,,.)9
(,,.)∈;

𝑀<,,. = 𝜇 + 𝑏, + 𝑏. + 𝑢, - �⃗�.
+𝑏.,@AB(C) + 𝑏,(𝑡)

Time factors:
• Column (movie)- time
baseline 𝑏.,@AB(C)

• Row (user)-time
baseline function 𝑏,(𝑡)

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Bayesian Modeling
25

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

?

??

?

?

?

?

1

5 4

2

U

V

≈

5

2 2 2 .9 .1

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Bayesian Modeling
26

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

µU

~
Sample user factors from
Normal distribution

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Bayesian Modeling
27

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

µU

~
Sample user factors from
Normal distribution

Update mean based on
user factors

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Bayesian Modeling
28

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

µV

~
Similarly sample movie factors

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Bayesian Modeling
29

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

𝑝 𝑀,,. 𝑈, 𝑉 = 𝒩(𝑀,,.|𝑢, - �⃗�., 𝜎9)

? ?? ? ? ? ? ? ?? ? ? ? ? ?

0.1

0.2

0.3

0.4

µ = 2.5319

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Bayesian Modeling
30

Bayesian Probabilistic Matrix Factorization
Ruslan Salakhutdinov and Andriy Mnih
ICML 2008

Bayesian Probabilistic Matrix Factorization using MCMC

0 10 20 30 40 50 60

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Epochs

R
M

SE

PMF

Bayesian PMF

Netflix
Baseline Score

SVD

Logistic PMF

 4 8 16 32 64 128 256 5120.89

0.895

0.9

0.905

0.91

0.915

0.92

Number of Samples

R
M

SE 30−D

60−D
5.7 hrs. 23 hrs. 90 hrs.

11.7 hrs.
47 hrs. 188 hrs.

Bayesian PMF

Figure 2. Left panel: Performance of SVD, PMF, logistic PMF, and Bayesian PMF using 30D feature vectors, on the
Netflix validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs,
or passes, through the entire training set. Right panel: RMSE for the Bayesian PMF models on the validation set as a
function of the number of samples generated. The two curves are for the models with 30D and 60D feature vectors.

4.2. Training PMF models

For comparison, we have trained a variety of linear
PMF models using MAP, choosing their regularization
parameters using the validation set. In addition to lin-
ear PMF models, we also trained logistic PMF mod-
els, in which we pass the dot product between user-
and movie-specific feature vectors through the logistic
function σ(x) = 1/(1 + exp(−x)) to bound the range
of predictions:

p(R|U, V,α) =
N
∏

i=1

M
∏

j=1

[

N (Rij |σ(UT
i Vj),α

−1)

]Iij

. (15)

The ratings 1, ..., 5 are mapped to the interval [0, 1]
using the function t(x) = (x− 1)/4, so that the range
of valid rating values matches the range of predictions
our model can make. Logistic PMF models can some-
times provide slightly better results than their linear
counterparts.

To speed up training, instead of performing full batch
learning, we subdivided the Netflix data into mini-
batches of size 100,000 (user/movie/rating triples) and
updated the feature vectors after each mini-batch. We
used a learning rate of 0.005 and a momentum of 0.9
for training the linear as well as logistic PMF models.

4.3. Training Bayesian PMF models

We initialized the Gibbs sampler by setting the model
parameters U and V to their MAP estimates obtained
by training a linear PMF model. We also set µ0 =
0, ν0 = D, and W0 to the identity matrix, for both
user and movie hyperpriors. The observation noise

precision α was fixed at 2. The predictive distribution
was computed using Eq. 10 by running the Gibbs

sampler with samples {U (k)
i , V

(k)
j } collected after each

full Gibbs step.

4.4. Results

In our first experiment, we compared a Bayesian PMF
model to an SVD model, a linear PMF model, and a
logistic PMF model, all using 30D feature vectors. The
SVD model was trained to minimize the sum-squared
distance to the observed entries of the target matrix,
with no regularization applied to the feature vectors.
Note that this model can be seen as a PMF model
trained using maximum likelihood (ML). For the PMF
models, the regularization parameters λU and λV were
set to 0.002. Predictive performance of these models
on the validation set is shown in Fig. 2 (left panel).
The mean of the predictive distribution of the Bayesian
PMF model achieves an RMSE of 0.8994, compared to
an RMSE of 0.9174 of a moderately regularized linear
PMF model, an improvement of over 1.7%.

The logistic PMF model does slightly outperform its
linear counterpart, achieving an RMSE of 0.9097.
However, its performance is still considerably worse
than that of the Bayesian PMF model. A simple
SVD achieves an RMSE of about 0.9280 and after
about 10 epochs begins to overfit heavily. This ex-
periment clearly demonstrates that SVD and MAP-
trained PMF models can overfit and that the pre-
dictive accuracy can be improved by integrating out
model parameters and hyperparameters.

884

Better

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Bayesian Modeling with Co-Clustering
31

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

µU1

~

Cluster users
with similar factors

µU2

~

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 32

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

U

V

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Bayesian Modeling with Co-Clustering
33

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 11 12 22 23 24 25 26 27 28 29 30 31 39 40 42 48 49 50

All Groups
Star Trek

Veggie Tales
Scooby Doo

Southpark
Simpsons

Family Guy

8.3 Robustness to spam
One of the benefits of incorporating clusters into a model

is that similar users will get clustered together, whether it be
users who have similar tastes, or anomalous users who may
try to manipulate ratings for their own gain. Spammers are
an issue in any large, community driven rating system as
there is frequently a financial incentive for positive ratings
and an incentive for negative ratings for competitors. By
modeling the latent clusters of users, we are able to group
similar users together. This means that anomalous users,
such as spammers, may get grouped together, and thus have
a smaller impact overall on ratings outside of their collective
group or groups. To do this we ran two experiments. In each
we take one of the datasets above and inject spammers who
are trying to manipulate the ratings for a subset of items.
We then measure how much these spammers e↵ect the fit of
our model on these items.

PP Before PP After
BPMF 1.7047 1.8146
CoBaFi 1.0549 1.7042

Table 3: Predictive probability on “attacked items”
in the Amazon Electronics dataset before and after
adding spammers.

PP Before PP After
BPMF 1.2375 1.3057
CoBaFi 0.9670 1.2935

Table 4: Predictive probability on“attacked movies”
in the Netflix-24k dataset before and after add spam
from hijacked accounts.

Dumb spammers: For the first experiment we model
spammers who are quite flagrant in how they try to manip-
ulate certain reviews and do not camouflage their behavior
by also providing typical ratings. To do this we use the
Amazon Electronics dataset and see if we can take gener-
ally well-liked products and bring their ratings down (as a
competitor would want). We select 31 products with a high
average rating and at least 100 reviews. These products in-
clude Logitech speakers, an HDMI cable, a TiVo USB Net-
work Adapter, and an HP LaserJet Printer, among many
others. For these products we randomly select 100 ratings
for each project to be included in the training dataset and
the rest to be held out for the test dataset. We subsequently
create 100 new accounts, and for all of these products our
spam accounts give a rating of 1.0. As such, each product
being manipulated now has half real reviews and half fake.
As can be seen in Table 3, the predictive probability of our
model is better than that for BPMF before and after we
add the spam. Additionally, while the model is clearly ef-
fected by the spammers as it shifts to cover both the 1 star
and 5 star reviews, it does an even better job of clustering
spammers and the products they attack. As can be seen in
Figure 4(a), most of the spammers (83%) are placed in the
same clustered. Additionally, not graphed due to its sim-
plicity, the attacked products are all placed into the same
cluster. In an industry setting, this sort of interpretability
and ability to understand group behavior would be valuable
for investigating suspicious behavior.

Spammers with hijacked accounts: Second we test
the model’s robustness to more clever spammers - those

who hijack real accounts. In this case we take real users
and assume their account has been hijacked and begin pro-
viding misleading dubious reviews. This is a common issue
in online systems and is the worst-case form of spammers
who add realistic-looking reviews to try to camouflage their
fraudulent behavior. To test our model in this setting we use
the Netflix-24k dataset. Here we choose 85 movies with an
average rating over 4.3 and with at least 200 reviews. Addi-
tionally we select 99 users at random (their average number
of ratings is approximately 209). As before, for each of the
movies selected to be attacked we include 100 of their ratings
at random in the training set and use the rest for the test
set. For the hijacked accounts we merely add 1 star reviews
to all of the movies attacked. Again, we see in Table 4 that
our model has a better predictive probability than BPMF
both before and after we add the spam. More impressively,
CoBaFi is still successful in clustering together the hijacked
users and the attacked movies, as seen in Figures 4(b-c).
Note, this is particularly surprising for the hijacked users
since they may have hundreds or thousands of legitimate re-
views along with the only 85 fake reviews that contribute
to their profile. From this we see that CoBaFi naturally
handles spammers in a way that minimizes their impact on
collaborative filtering and groups them together.

8.4 Natural clusters in real world
As mentioned earlier, being able to understand your data

and interpret your latent parameters is useful in many appli-
cations and industry settings. Besides clustering anomalous
behavior, our model provides interesting insight into the nat-
ural clusters of items based on their latent preferences in vj .
We analyze the clusters produced from the Netflix-48k

dataset. In fitting our model, we set the maximum number
of clusters to 50, which given the number of movies/beers
being rated leaves a still fairly coarse clustering. In order to
isolate the e↵ects of the clustering mechanism and not the
flexible distribution, we use a Normal as our recommender
distribution so that clusters are based only on vj . In the
Netflix-48k dataset we analyzed the clustering in two di↵er-
ent ways. In Figure 3, we look at the distribution of di↵erent
series across di↵erent clusters. We see that for most of the
series nearly all of the seasons or films in that series are clus-
tered together. Additionally, we see in Table 5 that clusters
often contain movies within the same genre, with Cluster
28 containing generally comedies, Cluster 30 containing ma-
terial for children, and Cluster 48 including science fiction.
This sort of interpretable model is of course useful in prac-
tice to understand your data and user preferences.

Cluster 28 Cluster 30 Cluster 48
Simpsons Scooby Doo Star Trek
Family Guy Spy Kids Back to the Future
Monty Python Stuart Little Southpark
Curb your Enthusiasm Dr. Dolittle Lord of the Rings
The Twilight Zone Lion King Harry Potter
Arrested Development Agent Cody Banks The X-Files
Chappelle Show
Monty Python
Seinfeld

Table 5: Clusters of movies and shows from Netflix.
Series are only included if there are at least 2 items
from that show or series in the cluster.

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Online Rating Models
Typically fit a Gaussian - Minimize RMSE

? ?? ? ? ? ? ? ?? ? ? ? ? ?

0.1

0.2

0.3

0.4

0.5

�4 �3 �2 �1 0 1 2 3

0

0.1

0.2

0.3

0.4

Data Normal CF

34

�
4
�
3
�
2
�
1

0
1

2
3

0

0.1

0.2

0.3

0.4

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Online Rating Models
Typically fit a Gaussian - Minimize RMSE

? ?? ? ? ? ? ? ?? ? ? ? ? ?

0.1

0.2

0.3

0.4

0.5

�4 �3 �2 �1 0 1 2 3

0

0.1

0.2

0.3

0.4

? ?? ? ? ? ? ? ?? ? ? ? ? ?

0.1

0.2

0.3

0.4

0.5

Data Normal CF CoBaFi

✖

35

�
4
�
3
�
2
�
1

0
1

2
3

0

0.1

0.2

0.3

0.4

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Shape of Netflix reviews
36

More Gaussian More SkewedMovies TV
Shows

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

Most Gaussian Most skewed
The Rookie The O.C. Season 2
The Fan Samurai X: Trust and Betrayal
Cadet Kelly Aqua Teen Hunger Force: Vol. 2
Money Train Sealab 2001: Season 1
Alice Doesn’t Live Here Aqua Teen Hunger Force: Vol. 2
Sea of Love Gilmore Girls: Season 3
Boiling Point Felicity: Season 4

Stars # Stars

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

What is a tensor?
• Tensors are used for structured data > 2 dimensions
• Think of as a 3D-matrix

Date of
rating

User

Movie

For example:

Kanye West rated The Sound of
Music five stars last January.

37

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Tensor Decomposition

≈U

V

X

38

Date

User

Movie

Kanye West rated The Sound of
Music five stars last January.

User

M
ov
ie

Date

X

X ⇡ U ⌦ V ⌦W

Xi ,j ,k ⇡
RankX

r=1

Ui ,rVj ,rWk,r

2

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Graph Clustering with Tensors
39

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco
FUSION 2013

Author

Author

Graph View
Multiple possible views
of the DBLP network:
1. Who-cites-whom
2. Co-authorship
3. Using same words in title

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Graph Clustering with Tensors
40

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco
FUSION 2013

Author

Author

Graph View

+ +…≈

Sparse Tensor Factorization

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Graph Clustering with Tensors
41

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco
FUSION 2013

Algorithm 1: GRAPHFUSE

Input: Multi-graph G in tensor form X of size I ⇤ J ⇤K, number of clusters R, sparsity penalty factor �.
Output: Assigments to clusters ↵I and ↵J . Matrix C of size K ⇤R that shows the contribution of each one of the K views to each one of the R clusters.

1: {A,B,C} = PARAFAC SLF (X, R� 1, �).
2: for i = 1 · · · I do
3: if A(i, :) = 0 then
4: ↵I(i) = R
5: else
6: ↵I(i) = argmaxA(i, :)
7: end if
8: end for
9: Repeat iteration 2-8 for all J rows of B. Labels are output in ↵J .

Fig. 2. (top) SYNTHETIC-2 SIM and (bottom) SYNTHETIC-3 DIF share the same clustering scheme, with different amount of cross edges and cluster densities.
DIF multi-graph, by construction, is harder to cluster than SIM.

(a) citation (b) co-auth. (c) co-term

Fig. 3. Spy-plots of 3 views in DBLP-1

(a) citation (b) co-auth. (c) co-term

Fig. 4. Spy-plots of 3 views in DBLP-2

B. Clustering accuracy

In order to evaluate the performance of our proposed
methods, we use the Normalized Mutual Information, a widely
used metric for computing clustering accuracy of a method
against the desired ground truth clustering [12]. Moreover, we
compare our methods, in terms of NMI, with two baseline
approaches, which we briefly describe in the sequel:

BASELINE-1 algorithm sums all the adjacency matrices of a
multi-graph obtaining a new aggregate sum-matrix and applies
a k-way spectral clustering over this aggregate [20]. The k-way
spectral clustering is based on the k-means algorithm that is
applied on the Laplacian of the sum-matrix.

BASELINE-2 algorithm first constructs the spectral kernel for
each graph view and then sums the spectral kernels summa-
rizing all the dimensions of the multi-graph. Successively, the
k-means algorithm is applied to the matrix containing the sum
of the kernels in order to obtain the final clustering. Details
for this algorithm may be found in [19].

In Table I we show the NMI results on all datasets for all
methods. We observe that MULTICLUS always outperforms
baseline methods on all synthetic datasets. As for GRAPH-
FUSE, it has good performance over SYNTHETIC-1 and SYNT-
2-SIM while, for SYNT-3-DIF, the results are on par with the
baselines. Recall that by construction SYNT-3-DIF is difficult
to cluster (see Fig.2 bottom), hence the drop in performance
for all methods.

With respect to the real datasets, GRAPHFUSE obtains
the best scores over both DBLP-1 and DBLP-2, while MUL-
TICLUS has comparable behaviour with the baselines. We
notice that NMI scores are overall lower on real datasets, as
they have much less structure than the synthetic ones (see
Fig.3) in addition to a lot more noise (see Fig.4). Nevertheless,
GRAPHFUSE achieves significantly better accuracy compared
to other methods. These encouraging results underline the
merits of modeling the multi-graph clustering problem using
tensors, as they seem to well exploit the interrelations of the
views.

Algorithm 1: GRAPHFUSE

Input: Multi-graph G in tensor form X of size I ⇤ J ⇤K, number of clusters R, sparsity penalty factor �.
Output: Assigments to clusters ↵I and ↵J . Matrix C of size K ⇤R that shows the contribution of each one of the K views to each one of the R clusters.

1: {A,B,C} = PARAFAC SLF (X, R� 1, �).
2: for i = 1 · · · I do
3: if A(i, :) = 0 then
4: ↵I(i) = R
5: else
6: ↵I(i) = argmaxA(i, :)
7: end if
8: end for
9: Repeat iteration 2-8 for all J rows of B. Labels are output in ↵J .

Fig. 2. (top) SYNTHETIC-2 SIM and (bottom) SYNTHETIC-3 DIF share the same clustering scheme, with different amount of cross edges and cluster densities.
DIF multi-graph, by construction, is harder to cluster than SIM.

(a) citation (b) co-auth. (c) co-term

Fig. 3. Spy-plots of 3 views in DBLP-1

(a) citation (b) co-auth. (c) co-term

Fig. 4. Spy-plots of 3 views in DBLP-2

B. Clustering accuracy

In order to evaluate the performance of our proposed
methods, we use the Normalized Mutual Information, a widely
used metric for computing clustering accuracy of a method
against the desired ground truth clustering [12]. Moreover, we
compare our methods, in terms of NMI, with two baseline
approaches, which we briefly describe in the sequel:

BASELINE-1 algorithm sums all the adjacency matrices of a
multi-graph obtaining a new aggregate sum-matrix and applies
a k-way spectral clustering over this aggregate [20]. The k-way
spectral clustering is based on the k-means algorithm that is
applied on the Laplacian of the sum-matrix.

BASELINE-2 algorithm first constructs the spectral kernel for
each graph view and then sums the spectral kernels summa-
rizing all the dimensions of the multi-graph. Successively, the
k-means algorithm is applied to the matrix containing the sum
of the kernels in order to obtain the final clustering. Details
for this algorithm may be found in [19].

In Table I we show the NMI results on all datasets for all
methods. We observe that MULTICLUS always outperforms
baseline methods on all synthetic datasets. As for GRAPH-
FUSE, it has good performance over SYNTHETIC-1 and SYNT-
2-SIM while, for SYNT-3-DIF, the results are on par with the
baselines. Recall that by construction SYNT-3-DIF is difficult
to cluster (see Fig.2 bottom), hence the drop in performance
for all methods.

With respect to the real datasets, GRAPHFUSE obtains
the best scores over both DBLP-1 and DBLP-2, while MUL-
TICLUS has comparable behaviour with the baselines. We
notice that NMI scores are overall lower on real datasets, as
they have much less structure than the synthetic ones (see
Fig.3) in addition to a lot more noise (see Fig.4). Nevertheless,
GRAPHFUSE achieves significantly better accuracy compared
to other methods. These encouraging results underline the
merits of modeling the multi-graph clustering problem using
tensors, as they seem to well exploit the interrelations of the
views.

DBLP-1

DBLP-2

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Graph Clustering with Tensors
42

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs
Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco
FUSION 2013

Dataset Baseline GraphFuse
DBLP-1 0.12 0.30
DBLP-2 0.08 0.12

Modeling Accuracy

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Coupled Matrix + Tensor Decomposition

Movie

Date

UserExplicit Genres

43

Movie

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Coupled Matrix + Tensor Decomposition

≈U

V

XY

A

44

X

k

Ui ,k = 1

X

k

U

2
i ,k 1

p(Word w |Doc d) =
KX

Topic k=1

p(w |Topic = k) · p(Topic = k |d)

Xd ,w = p(Word w |Document d)

⇡d ,k = p(Topic k |Document d)

�w ,k = p(Word w |Topic k)

NN(x) =

⇢
x if x � 0

0 if x < 0

Ui ,r = NN

✓
Ui ,r � ⌘

@Li ,j ,k
@Ui ,r

◆

S�(x) =

8
<

:

x � � if x > �
x + � if x < ��
0 if � � x �

P(x) =

x

kxk1

b(x) =

⇢
x if kxk2 1

x
kxk2

if otherwise

X

t

⌘2t < 1

X ⇡ U ⌦ V ⌦W

Y ⇡ UA

>

min

U,V ,W ,A
kX � U ⌦ V ⌦W k2F + kY � UV

>k2F

3

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 45

Collective Factorization for Relational Data:
An Evaluation on the Yelp Datasets
Nitish Gupta, Sameer Singh

Joint Factorization
Entities, E

Model Parameters, �
k-dimensional entity vectors

k

|SU |
�SU

Users, SU

k

|SB |
�SB

Businesses, SB

k

|SC |
�SC

Categories, SC

k

|SA|
�SA

Attributes, SA

k

|SW |
�SW

Review words, SW

Relations, R

Partial Observations
Predict missing data

|SC |

|SB |C

Business Categories

|SA|

|SB |A

Business Attributes

|SU |

|SB |R

User/Business Ratings

|SW |

|SB |BW

Reviews for Business

|SW |

|SU |UW

Reviews by Users

Figure 1: Collective Factorization for the Yelp Dataset: Overview of the entities and the relations, with the latter
represented by sparsely-observed matrices. The collective factorization model contains low-dimensional dense factors
for all the entities which are used to model the respective relations the entities appear in (denoted by arrows).

|SA| |SC| |SB| |SW| |SU|

Phoenix 92 472 22 180 25 277 102 576
Las Vegas 92 416 14 583 28 551 147 774
Madison 77 176 2 118 6 811 9 737
Edinburgh 74 160 2 840 6 830 2 484

Table 1: Number of entities of each type

|A| |C| |R| |BW| |UW|

Phoenix 354 068 10 468 960 475 116 8 533 231 12 339 706
Las Vegas 235 735 6 066 528 556 326 7 246 237 16 598 396
Madison 41 105 372 768 35 661 706 026 987 735
Edinburgh 41 218 454 400 20 306 730 871 435 801

Table 2: Number of observed entries for each relation

shows how different entities participate in multiple re-
lations, which leads to their latent factors being shared
among different relations. For example, the latent factors
for businesses (SB) participate in modeling relations A,
C, R and BW .

4 Experiment Setup
In this section, we describe some of the details of our eval-
uation setup. To create the BW and UW matrices, we
tokenize the reviews, remove the punctuations, numbers,
and stop words, and stem the words using Porter [1980].
For evaluation purposes, we only consider words that ap-
pear in at least 10 reviews. Since BW and UW matrices
only contain observed words (all positives), we sample
negative data entries in each epoch by randomly selecting
a set of words that were not observed to be true for the

business/user. The number of negative samples chosen for
each relation is same as the number of observed entries for
the relation. We found the categories C matrix to be fairly
comprehensive, and thus explicitly treat all unobserved
entries to be negative (thus effectively C is fully-observed
and complete). For our experiments, we only consider
categories that are associated with at least 5 businesses.

The primary benchmarks for evaluating our models will
be on predicting user ratings and business attributes, in
particular study how incorporating additional information
into the factorization model provides significant improve-
ment in predictions. The baseline models that perform
standard matrix factorization of R and A independent of
other relations are denoted by R and A respectively. We
evaluate the effect of integration of different relations by
factorizing combinations of different matrices collectively
with the relation we want to predict. An example of the
model that predicts ratings by incorporating business cate-
gories is denoted by R + C. To predict whether a relation
holds between entities, we primarily use the default lo-
gistic threshold of 0.5 for the predicted probability. We
measure the performance of our relation prediction in
terms of the F1 score defined as the harmonic mean of the
precision and recall, which is a much more accurate mea-
sure than accuracy for imbalanced label distributions. To
present a combined score for all the datasets, we aggregate
all the predictions of the datasets, and compute a single F1
score over them in the micro-averaged fashion. The value
of the regularization constant, � = 0.001, latent-factor
dimensions k = 30 and learning rate, � = 0.01 is used,
based on the performance on validation data.

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 46

Collective Factorization for Relational Data:
An Evaluation on the Yelp Datasets
Nitish Gupta, Sameer Singh

Joint Factorization

Phoenix Las Vegas Madison Edinburgh Combined

P R F1 P R F1 P R F1 P R F1 P R F1

R 72.3 72.0 72.2 70.6 70.5 70.5 71.3 65.9 68.5 75.1 75.2 75.2 71.5 71.1 71.3
R+A 71.3 76.1 73.7 69.1 73.2 71.1 70.2 70.7 70.5 73.1 79.8 76.3 70.2 74.5 72.3
R+BW 72.1 76.4 74.2 69.4 72.2 70.8 70.1 72.7 71.4 68.8 84.4 75.8 70.6 74.3 72.4
R+C 70.8 80.0 75.1 68.4 76.3 72.2 70.0 74.4 72.2 73.5 79.6 76.4 69.7 78.0 73.6
R+UW 73.9 87.1 80.0 74.3 83.2 78.5 73.9 83.8 78.5 75.7 81.5 78.5 74.2 84.9 79.2
R+A+C 71.6 77.0 74.2 69.0 73.2 71.1 70.1 71.2 70.7 72.8 76.9 74.8 70.3 74.9 72.5
R+A+BW 72.1 76.1 74.1 69.4 72.0 70.7 71.1 70.6 70.8 74.3 78.9 76.5 70.8 73.9 72.3
R+C+BW 71.9 76.9 74.3 69.3 72.5 70.9 71.1 72.3 71.7 74.6 79.9 77.2 70.6 74.6 72.6
R+A+UW 74.7 86.1 80.0 74.2 83.4 78.5 73.3 85.6 78.9 75.9 82.7 79.1 74.4 84.7 79.2
R+C+UW 76.8 85.5 80.9 75.8 84.3 79.9 76.5 85.5 80.8 76.4 81.8 79.0 76.3 84.9 80.4
R+A+C+BW 72.1 75.8 73.9 69.3 72.3 70.8 71.4 70.8 71.1 74.5 78.3 76.4 70.7 74.0 72.3
R+A+C+UW 76.5 85.5 80.8 75.6 83.4 79.3 77.0 78.9 77.9 76.4 80.7 78.5 76.1 84.1 79.9

Table 3: Held-out Evaluation of Ratings: Precision/Recall/F1 on the different datasets on predicting held-out ratings
from R . The models being evaluated vary in the number of relations modeled when learning the factors, with additional
relations often resulting in more accurate models across datasets.

5 Results

In this section, we evaluate the effect of incorporating re-
lational information on the collective factorization model
in predicting user ratings and business attributes. First, we
present the accuracy of predicting ratings and attributes
on a held-out test set in §5.1 to test the performance when
the entities already contain a few observed ratings and
attributes. We also investigate the performance of differ-
ent models on cold-start estimation for businesses in §5.2,
where, for example, we predict ratings for businesses for
which no past ratings or reviews have been observed. Fi-
nally, utilizing the fact that the model embeds all entity
types in the same k-dimensional space, we present visual-
izations in §5.3 that explore similarities between entities
for which explicit relations are not observed.

5.1 Held-Out Evaluation

The most important problem in database completion is
to be able to predict unobserved relations for entities that
already exist in the database. For example, predicting rat-
ings for existing users in Yelp is important to recommend
businesses to users by learning preferences from their
past rating and review data. Similarly, attribute prediction
for existing businesses is essential to complete the Yelp
database, which could help users make more informed
decisions when choosing between businesses.

To show how our model improves significantly on pre-
dicting relations by leveraging additional information for
existing entities, we carry out evaluations on a held-out
test set from the observed data. To split the data for the
evaluation into training, validation and test sets, we ran-
domly choose 70% of the observed cells of the relation to
be tested for training and equally divide the remaining data
into validation and test sets. We present the performance

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

PR Curve (Ratings)

R
A+R

R+UW
R+BW

R+C
A+R+UW
R+C+UW

A+C+R+UW

Figure 2: Precision/Recall for Predicting Held-out Ratings

of different models by varying the business and user re-
lations available during training for rating and attribute
prediction.

Rating Prediction: We expect that incorporation of ad-
ditional information about businesses and users such as
reviews, categories, and attributes should improve predic-
tion of the ratings. Results for collective factorization of
combinations of various relational matrices with the R
matrix are shown in Table 3. Our baseline model achieves
an F1 score of 71.3%, with an increase of 1.4% when
incorporating information about the businesses in terms
of its attributes (A) or review words used for them (BW).
Incorporating business categories (C) improves upon the
baseline model by 3.22%. Significant improvement of
11.07% from the baseline is obtained by incorporating
relationship between the users and their review words
(UW). From this, it is clear that the user reviews are quite

Most valuable:
1. Ratings
2. Review text
3. Business
Categories

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 47

1. Subgraph Analysis

2. Propagation Methods

3. Latent Factor Models
a) Background

b) Normal Behavior

c) Abnormal Behavior

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Fraud Detection
48

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Fraud Detection
49

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

U

V

X

Fraud within a factorization

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Fraud within a factorization

Followees

Followers

51

U

V

X

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

1.5 1 -0.5 -2 1

Fraud within a factorization

Followees

Followers

52

U

V

X

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Fraud within a factorization
53

EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs
B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri,
Sridhar Machiraju, Christos Faloutsos
PAKDD, 2010

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Fraud within a factorization
54

ε ε 1 ε ε
u1 u3

EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs
B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri,
Sridhar Machiraju, Christos Faloutsos
PAKDD, 2010

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Fraud within a factorization
55

Inferring Strange Behavior from Connectivity Pattern in Social Networks
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang.
PAKDD, 2014

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Fraud within a factorization
56

0.1 ε 1 ε ε

Inferring Strange Behavior from Connectivity Pattern in Social Networks
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang.
PAKDD, 2014

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Fraud within a factorization
57

0.1 ε 1 ε ε

Username: a#####
Birthday: January 1st

Inferring Strange Behavior from Connectivity Pattern in Social Networks
Meng Jiang, Peng Cui, Alex Beutel,
Christos Faloutsos, Shiqiang Yang.
PAKDD, 2014

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Complementary Fraud Detection
Followees

Followers

58

U

V

X

? ? ? ? ?

Limited r

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Complementary Fraud Detection
59

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45 50

S
in

g
u
la

r
V

a
lu

e
 (

A
tt
a
ck

 S
iz

e
)

Number of components (k)

Fraudsters

Honest
users

Honest
objects

Customers

960 fraudsters
safely following
960 customers

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Complementary Fraud Detection
Followees

Followers

60

U

V

X

0 0 0 0 0

Limited r

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

11111111

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Complementary Fraud Detection
61

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 62

Complementary Fraud Detection

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 63

Complementary Fraud Detection

93% Precision

70% of accounts missed by Twitter

Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective
Neil Shah, Alex Beutel, Brian Gallagher,
Christos Faloutsos
ICDM, 2014.

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Practitioner’s Guide
64

Method Graph
Type

Node
Attributes

Edge
Attributes

Seed
Labels

EigenSpokes Directed+

Get-the-Scoop Directed+

fBox Directed+

CoBaFi Bipartite+ ✔ ️

CDOutliers Undirected ✔ ️

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Detecting Fraud within Recommendation
65

U

V

X

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

1.5 1 -0.5 -2 1

1.4 0.8 -0.2 -1.5 0.6

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Detecting Fraud within Recommendation
66

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Clustering Fraudsters
µ1 µ2 µ3 µ4 µ5

Naïve
Spammers

Spam + Noise Hijacked
Accounts

67

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Clustered Fraudsters

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75

3 45

P
e

rc
e

n
t

o
f

S
p

a
m

m
e

rs

Cluster Number

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

14 18 22 26 41 49

P
e

rc
e

n
t

o
f

S
p

a
m

m
e

rs

Cluster Number

Clustered hijacked
accounts

Clustered “attacked”
movies

68

83% are clustered
together

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

6 20 23 30 33 39 43 46

P
e

rc
e

n
t

o
f

S
p

a
m

m
e

rs

Cluster Number

Clustered naïve
spammers

CoBaFi: Collaborative Bayesian Filtering
Alex Beutel, Kenton Murray,
Christos Faloutsos Alex Smola
WWW 2014

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Outliers in Joint Factorization
69

Community Distribution Outlier Detection in Heterogeneous Information Networks
Manish Gupta, Jing Gao, and Jiawei Han
ECML/PKDD 2013

U2

V2

X2U1

V1

X1

Enforce 𝑈I ≈ 𝑈9 and 𝑈I, 𝑈9, 𝑉I, 𝑉9 ≥ 0

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Outliers in Joint Factorization
70

Community Distribution Outlier Detection in Heterogeneous Information Networks
Manish Gupta, Jing Gao, and Jiawei Han
ECML/PKDD 2013

U2

V2

X2U1

V1

X1

Enforce 𝑈I ≈ 𝑈9 and 𝑈I, 𝑈9, 𝑉I, 𝑉9 ≥ 0

Interesting design of X1 and X2;; see paper for details

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Outliers in Joint Factorization
71

Community Distribution Outlier Detection in Heterogeneous Information Networks
Manish Gupta, Jing Gao, and Jiawei Han
ECML/PKDD 2013

U2

V2

X2U1

V1

X1

Enforce 𝑈I ≈ 𝑈9 and 𝑈I, 𝑈9, 𝑉I, 𝑉9 ≥ 0

Rows of V2 represent common
patterns in X2 (cluster centroids)

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Outliers in Joint Factorization
72

Community Distribution Outlier Detection in Heterogeneous Information Networks
Manish Gupta, Jing Gao, and Jiawei Han
ECML/PKDD 2013

U2 X2

Rows of V2 represent common
patterns in X2 (cluster centroids)An anomaly is a row of Xi

that is not similar to
any row in Vi

V2

3

Brief Overview of CDOutlier Detection Given the soft community distributions for
each object of every type, one can compute distribution patterns. CDOutliers are ob-
jects that defy the trend, and the trend must be obtained from accurate pattern discov-
ery. However, pattern discovery suffers from the presence of CDOutliers itself. There-
fore, given community detection results, we design an iterative two-stage procedure
to identify CDOutliers, which integrates community distribution pattern discovery and
CDOutlier detection. First, we discover popular distribution patterns for all the ob-
ject types together by performing a joint nonnegative matrix factorization (NMF) on
the community distribution matrices, such that it ignores the outliers discovered in the
previous iteration. At the second step, the outlierness score for an object is computed
based on its distance from its nearest distribution pattern. The algorithm iterates until
the set of outliers discovered do not change. Thus, distribution pattern discovery and
outlier detection are improved through iterative update procedures, and upon conver-
gence, meaningful outliers are output.
Summary Our contributions are summarized as follows.
– We introduce the notion of identifying CDOutliers from heterogeneous networks
based on the discovery of community distribution patterns.

– We propose a unified framework based on joint-NMF formulation, which integrates
the discovery of distribution patterns across multiple object types and the detection
of CDOutliers based on such patterns together.

– We show interesting and meaningful outliers detected from multiple real and syn-
thetic datasets.

Our paper is organized as follows. In Sec. 2, we introduce the notion of distribution
patterns and develop our method to extract heterogeneous community trends for objects
of different types in the form of popular distribution patterns. In Sec. 3, we present
discussions related to practical usage of the algorithm. We discuss datasets and results
with detailed insights in Sec. 4. Finally, related work and conclusions are presented in
Sec. 5 and 6 respectively.

2 CDOutlier Detection Approach

Notation Meaning
τk kth object type
k, l Index for a type of objects
Nk Number of objects of type k
K Number of types of objects
C Number of communities
C′ Number of distribution patterns
T

Nk×C

k Membership matrix for objects of type k
W

Nk×C′

k Distribution pattern indicator matrix for objects of type k
HC′×C

k Distribution patterns matrix for objects of type k
Ok Outlier objects set for type k
α Regularization Parameter

Fig. 1. Table of Notations

0

0.5

1

0

0.5

1

0

0.5

1

Fig. 2. Distribution Patterns in 3D
Space

In this section, we will present our iterative two-stage approach for CDOutlier de-
tection. Table 1 shows the important notations we will use in this paper. We denote an

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Practitioner’s Guide
73

Method Graph
Type

Node
Attributes

Edge
Attributes

Seed
Labels

EigenSpokes Directed+

Get-the-Scoop Directed+

fBox Directed+

CoBaFi Bipartite+ ✔ ️

CDOutliers Undirected ✔ ️

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Recap
•SVD captures communities of interest
•Bayesian methods can:
• Handle missing values
• Give factorization models (-> patterns, &
anomalies)

•Group-outliers: spotted by CoBaFi,
Get-the-Scoop, etc.

74

≈

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

CONCLUSION

75

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015 76

A.+Beutel,+L.+Akoglu,+C.+FaloutsosKDD+2015

Graphs+of+User+Behavior

14

Undirected

Directed

Bipartite

Node+Attributes

Edge+Attributes

Unsupervised

Semi&Supervised

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Open Problems / Opportunities
P1. Complex data: How should we integrate
data from multiple data sources?

77

A.+Beutel,+L.+Akoglu,+C.+FaloutsosKDD+2015

Graphs+of+User+Behavior

14

Undirected

Directed

Bipartite

Node+Attributes

Edge+Attributes

Unsupervised

Semi&Supervised

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Open Problems / Opportunities
P2. Adversarial analysis: Can we offer
provable guarantees on detecting fraud and
spam?

78

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Open Problems / Opportunities
P3. Early detection: Can we detect
fraudsters before they cause significant
damage?

79

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Summary
80

Local Subgraph Analysis: Patterns and Features
e.g. using ego-netsA.#Beutel,#L.#Akoglu,#C.#FaloutsosKDD#2015 47

Oddball:#Spotting#anomalies# in#weighted#graphs
Leman#Akoglu,#Mary#McGlohon,#Christos#Faloutsos
PAKDD 2010

Pattern:#EgoOnet#Power#Law#Density

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Summary
81

Propagation Methods
“Guilt-by-association”

“Importance-by-association” = PageRank
A.#Beutel,#L.#Akoglu,#C.#FaloutsosKDD#2015

PageRank
20

Anatomy#of#a#LargebScale#Hypertextual Web#Search#Engine
Lawrence#Page,#Sergey#Brin
WWW 1998

In#“random#walk,”#jump#to#new#node#
randomly#with#probability#(1bc)

Rank = ?DLRank+ 1− ?
O P

A.#Beutel,#L.#Akoglu,#C.#FaloutsosKDD#2015

Semibsupervised#Classification

28

?

?

?

?

?

Given#a#graph#and#
labels#for#some#nodes,#
can#we#learn#the#labels#
for#the#other#nodes?

Generally,#learn#labels#X so#
neighbors#have#the#same#label

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Summary
82

Latent Factor Models
Find multiple communities, patterns and

anomalies.A.#Beutel,#L.#Akoglu,#C.#FaloutsosKDD#2015

Detecting#Fraud#within#Recommendation
65

CoBaFi:#Collaborative#Bayesian#Filtering
Alex#Beutel,#Kenton#Murray,#
Christos#Faloutsos#Alex#Smola
WWW'2014

A.#Beutel,#L.#Akoglu,#C.#FaloutsosKDD#2015

Complementary#Fraud#Detection
61

Spotting#Suspicious#Link#Behavior#with#fBox:#An#Adversarial#Perspective
Neil#Shah,#Alex#Beutel,#Brian#Gallagher,#
Christos#Faloutsos
ICDM,#2014.#

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Take Away

83

User Modeling and Fraud Detection
are two sides of the same coin.

A.#Beutel,#L.#Akoglu,#C.#FaloutsosKDD#2015

Find#Fraud#in#HITS

53

CatchSync:#Catching#Synchronized#Behavior#in#Large#Directed#Graphs

Meng Jiang,#Peng#Cui,#Alex#Beutel,#

Christos#Faloutsos,#Shiqiang Yang

KDD,#2014

Model#a#user’s#following#

behavior:

• Outbdegree

• Hubness

Surprising#to#have#

high#outbdegree#

but#low#hubness

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Thanks again to

84

NSF Grant No. IIS-1408924, IIS-1408287,
CAREER 1452425, DGE-1252522, ...

A. Beutel, L. Akoglu, C. FaloutsosCCS 2015

Questions?
85

References and resources available at
cs.cmu.edu/~abeutel/ccs2015_tutorial

