1. Subgraph Analysis

CCS 2015

2. Propagation Methods

3. Latent Factor Models

a) Background

b) Normal Behavior

c) Abnormal Behavior

CCS 2015

CCS 2015

CCS 2015

Matrix M

HITS Authoritativeness \vec{v} is first eigenvector of $M^{T}M$ $\vec{v} = cM^{T}M\vec{v}$

Hubness \vec{u} is first eigenvector of MM^{T} $\vec{u} = cMM^{T}\vec{u}$

4

CCS 2015

Matrix M

HITS Authoritativeness \vec{v} is first eigenvector of $M^{T}M$ $\vec{v} = cM^{T}M\vec{v}$

Hubness \vec{u} is first eigenvector of MM^{T} $\vec{u} = cMM^{T}\vec{u}$

What about the other eigenvectors?

Matrix Modeling Singular Value Decomposition

Matrix Modeling Singular Value Decomposition

7

Matrix Modeling Singular Value Decomposition

 Σ contains normalization for \vec{u} and \vec{v}

CCS 2015

What does each eigenvector capture?

Topics

CCS 2015

What does each eigenvector capture?

* 🕅

Topics

* 🕅

*

1. Subgraph Analysis

2. Propagation Methods

3. Latent Factor Models

a) Background

b) Normal Behavior

c) Abnormal Behavior

15

Matrix Completion

CCS 2015

Matrix Completion

CCS 2015

 \approx Can't find singular vectors with missing entries. Instead, $\min_{U,V} \sum_{(i,j)\in M} (M_{i,j} - \vec{u}_i \cdot \vec{v}_j)^2$

 \approx

17

Matrix Completion

Can't find singular vectors with missing entries. Instead,

$$\min_{U,V} \sum_{(i,j)\in M} (M_{i,j} - \vec{u}_i \cdot \vec{v}_j)^2$$

Genres

♪

谷

Matrix Completion

$$\min_{U,V} \sum_{(i,j)\in M} (M_{i,j} - \vec{u}_i \cdot \vec{v}_j)^2$$

.8

.5

-.5

Genres

1.2 -.1

谷

 ≈ 1

 \approx

19

Matrix Completion

CCS 2015

Can't find singular vectors with missing entries. Instead,

$$\min_{U,V} \sum_{(i,j)\in M} (M_{i,j} - \widehat{M}_{i,j})^2$$

 $\widehat{M}_{i,j} = \vec{u}_i \cdot \vec{v}_j$

Genres

5

谷

Adding Latent Factors

What if we know the time of the rating (time of the edge being created)?

Adding Latent Factors

Adding Latent Factors

Mean Rating by Movie Age (Netflix)

CCS 2015

Sample user factors from Normal distribution

Sample user factors from Normal distribution

Update mean based on user factors

Similarly sample movie factors

CCS 2015

CCS 2015

Bayesian Modeling with Co-Clustering

Cluster users with similar factors

CCS 2015

A. Beutel, L. Akoglu, C. Faloutsos

32

aloo_{go}e <u>H</u>e

Bayesian Modeling with Co-Clustering

Cluster 28	Cluster 30	Cluster 48
Simpsons	Scooby Doo	Star Trek
Family Guy	Spy Kids	Back to the Future
Monty Python	Stuart Little	$\operatorname{Southpark}$
Curb your Enthusiasm	Dr. Dolittle	Lord of the Rings
The Twilight Zone	Lion King	Harry Potter
Arrested Development	Agent Cody Banks	The X-Files

CCS 2015

Online Rating Models

CCS 2015

Online Rating Models

Shape of Netflix reviews

DENNISQUAID	Most Gaussian	Most skewed	Berne	
	The Rookie	The O.C. Season 2		
	The Fan	Samurai X: Trust and Betrayal	THE	
	Cadet Kelly	Aqua Teen Hunger Force: Vol. 2		
	Money Train	Sealab 2001: Season 1		
	Alice Doesn't Live Here	Aqua Teen Hunger Force: Vol. 2		
	Sea of Love	Gilmore Girls: Season 3		
	Boiling Point	Felicity: Season 4		
# Stars			# Stars	
Movies	More Gaussian	More Skewed	TV	
			Shows	
CoBaFi: Colla	borative Bayesian Filterin	g		
Alex Beutel, K	enton Murray,			
Christos Falou WWW 2014	utsos Alex Smola			
What is a tensor?

- Tensors are used for structured data > 2 dimensions
- Think of as a 3D-matrix

For example:

Kanye West rated The Sound of Music five stars last January.

CCS 2015

CCS 2015

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco FUSION 2013

Author

Sparse Tensor Factorization

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco *FUSION* 2013

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco *FUSION* 2013

Dataset	Baseline	GraphFuse
DBLP-1	0.12	0.30
DBLP-2	0.08	0.12

Modeling Accuracy

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco *FUSION* 2013

Coupled Matrix + Tensor Decomposition

Coupled Matrix + Tensor Decomposition

Joint Factorization

CCS 2015

Collective Factorization for Relational Data: An Evaluation on the Yelp Datasets Nitish Gupta, Sameer Singh

Collective Factorization for Relational Data: An Evaluation on the Yelp Datasets Nitish Gupta, Sameer Singh

CCS 2015

1. Subgraph Analysis

CCS 2015

2. Propagation Methods

3. Latent Factor Models

a) Background

b) Normal Behavior

c) Abnormal Behavior

Fraud Detection

Fraud Detection

CCS 2015 A. Beutel, L. Akoglu, C. Faloutsos

Fraud within a factorization

Followees

Followees

CCS 2015

EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, Christos Faloutsos *PAKDD*, 2010 CCS 2015

54

Fraud within a factorization

EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, Christos Faloutsos *PAKDD*, 2010

Inferring Strange Behavior from Connectivity Pattern in Social Networks Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. PAKDD, 2014

Inferring Strange Behavior from Connectivity Pattern in Social Networks Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. *PAKDD*, 2014

57

Inferring Strange Behavior from Connectivity Pattern in Social Networks Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. PAKDD, 2014

Complementary Fraud Detection

CCS 2015

Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
EigenSpokes	Directed+			
Get-the-Scoop	Directed+			
fBox	Directed+			
CoBaFi	Bipartite+		\checkmark	
CDOutliers	Undirected	\checkmark		

Detecting Fraud within Recommendation

X (

A. Beutel, L. Akoglu, C. Faloutsos

66

Detecting Fraud within Recommendation IMAX[®] X X

CoBaFi: Collaborative Bayesian Filtering Alex Beutel, Kenton Murray, Christos Faloutsos Alex Smola *WWW* 2014

Clustering Fraudsters

CCS 2015

Naïve Spammers Spam + Noise

 $\mathcal{U}_{arLambda}$

Hijacked Accounts

CoBaFi: Collaborative Bayesian Filtering Alex Beutel, Kenton Murray, Christos Faloutsos Alex Smola *WWW* 2014 Percent of Spammers

68

Clustered Fraudsters

83% are clustered together

CoBaFi: Collaborative Bayesian Filtering Alex Beutel, Kenton Murray, Christos Faloutsos Alex Smola *WWW* 2014

Outliers in Joint Factorization

Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \ge 0$

Community Distribution Outlier Detection in Heterogeneous Information Networks Manish Gupta, Jing Gao, and Jiawei Han ECML/PKDD 2013

Outliers in Joint Factorization

Interesting design of X_1 and X_2 ; see paper for details

Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \ge 0$

Community Distribution Outlier Detection in Heterogeneous Information Networks Manish Gupta, Jing Gao, and Jiawei Han *ECML/PKDD* 2013

Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \ge 0$

Community Distribution Outlier Detection in Heterogeneous Information Networks Manish Gupta, Jing Gao, and Jiawei Han *ECML/PKDD* 2013

Community Distribution Outlier Detection in Heterogeneous Information Networks Manish Gupta, Jing Gao, and Jiawei Han *ECML/PKDD* 2013
CCS 2015

Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
EigenSpokes	Directed+			
Get-the-Scoop	Directed+			
fBox	Directed+			
CoBaFi	Bipartite+		\checkmark	
CDOutliers	Undirected	\checkmark		

Recap

CCS 2015

- SVD captures communities of interest
- Bayesian methods can:
 - Handle missing values
 - Give factorization models (-> patterns, & anomalies)
- Group-outliers: spotted by CoBaFi, Get-the-Scoop, etc.

CONCLUSION

CCS 2015

Open Problems / Opportunities

CCS 2015

P1. Complex data: How should we integrate data from multiple data sources?

Open Problems / Opportunities

CCS 2015

P2. Adversarial analysis: Can we offer provable guarantees on detecting fraud and spam?

Open Problems / Opportunities

CCS 2015

P3. Early detection: Can we detect fraudsters before they cause significant damage?

Summary

CCS 2015

Local Subgraph Analysis: Patterns and Features e.g. using ego-nets

Summary

CCS 2015

Propagation Methods "Guilt-by-association" "Importance-by-association" = PageRank

Summary

CCS 2015

Latent Factor Models Find multiple communities, patterns and anomalies.

Take Away

User Modeling and Fraud Detection are two sides of the same coin.

Thanks again to

NSF Grant No. IIS-1408924, IIS-1408287, CAREER 1452425, DGE-1252522, ...

Questions?

CCS 2015

Carnegie Mellon Vielion Stony Brook University University

References and resources available at cs.cmu.edu/~abeutel/ccs2015 tutorial

