
1

15-211
Fundamental Structures
of Computer Science

February 20, 2003

Ananda Guna

Introduction to Sorting

Announcements

§ Homework #4 is available
ØDue on Monday, March 17, 11:59pm
ØGet started now!

§ Quiz #2
Ø Available on Tuesday, Feb.25
Ø Some questions will be easier if you have

some parts of HW4 working

§ Read
ØChapter 8

History

History of sorting from Knuth's book:

Hollerith's sorting machine developed in
1901-1904 used radix sort.
Card sorter: electrical connection with
vat of mercury made through holes. First
the 0s pop out, then 1s, etc.
For 2-column numerical data would sort of
units column first, then re-insert into
machine and sort by tens column.

History Ctd…

From NIST web site:
Hollerith's system-including punch, tabulator, and
sorter-allowed the official 1890 population count to be
tallied in six months, and in another two years all the
census data was completed and defined; the cost was $5
million below the forecasts and saved more than two
years‘time.
His later machines mechanized the card-feeding process,
added numbers, and sorted cards, in addition to merely
counting data.
In 1896 Hollerith founded the Tabulating Machine
Company, forerunner of Computer Tabulating Recording
Company (CTR). He served as a consulting engineer with
CTR until retiring in 1921.

In 1924 CTR changed its name to IBM- the International
Business Machines Corporation.

Comparison-based sorting

We assume

• Items are stored in an array.

• Can be moved around in the array.

• Can compare any two array
elements.

Comparison has 3 possible outcomes:

< = >

Flips and inversions

An unsorted array.

24 47 13 99 105 222

inversion
flip

Two elements are inverted if A[i] > A[j] for i < j

2

Insertion sort

105 47 13 99 30 222

47 105 13 99 30 222

13 47 105 99 30 222

13 47 99 105 30 222

13 30 47 99 105 222

105 47 13 99 30 222

Insertion sort

for i = 1 to n-1 do

insert a[i] in the proper place

in a[0:i-1]

So sub-array A[0..k-1] is sorted
for k = 1,.,n after k-1 steps

Proof using loop invariants

§ Proof is left as an exercise. Argue the correctness
of the algorithm by proving that the loop
invariants hold and then draw conclusions from
what this implies upon termination of the loops.

for i = 1 to n -1 do {

Invariant 1: A[0..i-1] is a sorted permutation of the original A[1..i-1]
j = i-1; key = A[i];

while (j >= 0 && A[j]>key)

{ Invariant 2: A[j .. i-1] are all larger than the key
A[j+1] = A[j--] ;

}

A[j] = key;

}

Analysis of Insertion Sort

§ In the ith step we do at least 1
comparison, at most (i-1) comparisons
and on average i/2 (call this Ci)
§ Mi – the number of moves at the ith step is

C i_+ 2
§ Obtain formulas for Cmin, C ave, Cmax and

same for Mmin, Mave, Mmax

§ Exercise
§ When is the worst case true? Best case

true? What type of data sets?

How fast is insertion sort?

•Each step of the insertion sort we
are reducing the number of
inversions.

•Takes O(#inversions + N) steps,
which is very fast if array is nearly
sorted to begin with. I.e no
inversions.

•We can slightly increase the
performance by doing binary
insertion

How long does it take to sort?

§ Can we do better than O(n2)?
ØIn the worst case?
ØIn the average case

3

Heapsort

§ Remember heaps:
ØbuildHeap has O(n) worst-case running

time. That is Σ 2i(h-i) = O(n)
ØdeleteMin has O(log n) worst-case

running time. So n deleteMin’s would
give a sorted list.

§ Heapsort:
ØBuild heap. O(n)
ØDeleteMin until empty. O(n log n)
ØTotal worst case: O(n log n)

N2 vs Nlog N

N^2
Nlog N

Sorting in O(n log n)

§ Heapsort establishes the fact that
sorting can be accomplished in
O(n log n) worst-case running time.

§ In fact, later we will see that it is
possible to prove that any sorting
algorithm will have require at least
O(n log n) in the worst case.

Heapsort in practice

§ The average-case analysis for
heapsort is somewhat complex.

§ In practice, heapsort consistently
tends to use nearly n log n
comparisons. What if the array is
sorted? What is the performance?

§ So, while the worst case is better
than n2, other algorithms sometimes
work better.

Shellsort

z A refinement of insertion sort
proposed by D.L.Shell in 1959
zDefine k-sort as a process that
sorts items that are k positions apart.
zSo one can do a series of k-sorts to
achieve a relatively few movements
of data.
zA 1-sort is really the insertion sort.
But then most items are in place.

Shell Sort algorithm

105 47 13 17 30 222 5 19

After 4-sort 30 47 5 17 105 222 13 19

5 17 13 19 30 47 105 222

original

After 2-sort

5 13 17 19 30 47 105 222After 1-sort

4

Shell Sort Analysis

§ Each pass benefit from previous
ØEach i-sort combines two groups sorted

in previous 2i-sort.

§ Any sequence of increments
(h1,h2,…) are fine as long as last one
is 1.
Øht = 1, hi+1 < hi

ØEach h-sort is an insertion sort

§ Very difficult mathematical analysis

Shell Sort Analysis ctd..

§ It is shown that for the sequence
1,3,7,15,31,… given by
Øht=1, hk-1=2hk+1 and t = logn –1
ØFor this sequence, Shell Sort Algorithm

is O(n1.2)
ØProof available but difficult. Ignore till

15-451.

Recursive sorting

§ If array is length 1, then done.

§ If array is length N>1, then split in
half and sort each half.
ØThen combine the results.

Divide-and-conquer

Divide-and-conquer is big

§ We will see several examples of
divide-and-conquer in this course.

Analysis of recursive sorting

§ Let T(n) be the time required to sort
n elements.

§ Suppose also it takes time n to
combine the two sorted arrays.

§ Then:

5

Recurrence relation

§ Then such “recursive sorting” is
characterized by the following
recurrence relation:

ØT(1) = 1
ØT(n) = 2 T(n/2) + n

A solution

§ A solution for
ØT(1) = 1
ØT(N) = 2T(N/2) + N

§ is given by
ØT(N) = Nlog N + N

Øwhich is O(Nlog N).

§ How to solve such equations?

Exact solutions

§ It is sometimes possible to derive
closed-form solutions to recurrence
relations.

§ Several methods exist for doing this.

Repeated substitution method

§ One technique is to use repeated
substitution.
ØT(N) = 2T(N/2) + N
Ø2T(N/2) = 2(2T(N/4) + N/2)
Ø = 4T(N/4) + N
ØT(N) = 4T(N/4) + 2N
Ø4T(N/4) = 4(2T(N/8) + N/4)
Ø = 8T(N/8) + N
ØT(N) = 8T(N/8) + 3N
ØT(N) = 2kT(N/2k) + kN

Repeated substitution, cont’d

§ We end up with
ØT(N) = 2kT(N/2k) + kN, for all k>1

§ Let’s use k=log N.
ØNote that 2log N = N.

§ So:
ØT(N) = NT(1) + Nlog N
Ø = Nlog N + N

Mergesort

§ Mergesort is the most basic recursive
sorting algorithm.
ØDivide array in halves A and B.
ØRecursively mergesort each half.
ØCombine A and B by successively

looking at the first elements of A and B
and moving the smaller one to the
result array.

§ Note: Should be a careful to avoid
creating of lots of result arrays.

6

Mergesort Mergesort

But
don’t
actually
want to
create
all of
these
arrays!

Mergesort

L LR L

Use simple indexes to perform the split.

Use a single extra array to hold each
intermediate result.

Analysis of mergesort

§ Mergesort generates almost exactly
the same recurrence relations shown
before.
ØT(1) = 1
ØT(N) = 2T(N/2) + N - 1, for N>1

§ Thus, mergesort is O(Nlog N).

Upper bounds for rec. relations

§ Divide-and-conquer algorithms are
very useful in practice.

§ Furthermore, they all tend to generate
similar recurrence relations.

§ As a result, approximate upper-bound
solutions are well-known for
recurrence relations derived from
divide-and-conquer algorithms.

Divide-and-Conquer Theorem

§ Theorem: Let a, b, c ≥ 0.
§ The recurrence relation
ØT(1) = b
ØT(N) = aT(N/c) + bN
Øfor any N which is a power of c

§ has upper-bound solutions
ØT(N) = O(N) if a<c
ØT(N) = O(Nlog N) if a=c
ØT(N) = O(Nlogca) if a>c

a=2, b=1,
c=2 for rec.
sorting

7

Upper-bounds

§ Corollary:

§ Dividing a problem into p pieces,
each of size N/p, using only a linear
amount of work, results in an
O(Nlog N) algorithm.

Upper-bounds

§ Proof of this theorem later in the
semester.

Checking a solution

§ It is also useful sometimes to check
that a solution is valid.

ØThis can be done by induction.

Checking a solution

§ Base case:
ØT(1) = 1log 1 + 1 = 1

§ Inductive case:
ØAssume T(M) = Mlog M + M, all M<N.
ØT(N) = 2T(N/2) + N

Checking a solution

§ Base case:
ØT(1) = 1log 1 + 1 = 1

§ Inductive case:
ØAssume T(M) = Mlog M + M, all M<N.
ØT(N) = 2T(N/2) + N

Checking a solution

§ Base case:
ØT(1) = 1log 1 + 1 = 1

§ Inductive case:
ØAssume T(M) = Mlog M + M, all M<N.
ØT(N) = 2T(N/2) + N
Ø = 2((N/2)(log(N/2))+N/2)+N
Ø = N(log N - log 2)+2N
Ø = Nlog N - N + 2N
Ø = Nlog N + N

8

Quicksort

§ Quicksort was invented in 1960 by
Tony Hoare.

§ Although it has O(N2) worst-case
performance, on average it is
O(Nlog N).

§ More importantly, it is the fastest
known comparison-based sorting
algorithm in practice.

Quicksort idea

§ Choose a pivot.

Quicksort idea

§ Choose a pivot.

§ Rearrange so that
pivot is in the
“right” spot.

Quicksort idea

§ Choose a pivot.

§ Rearrange so that
pivot is in the
“right” spot.

§ Recurse on each
half and conquer!

Quicksort algorithm

§ If array A has 1 (or 0) elements,
then done.
§ Choose a pivot element x from A.
§ Divide A-{x} into two arrays:
ØB = {y∈A | y≤x}
ØC = {y∈A | y≥x}

§ Quicksort arrays B and C.
§ Result is B+{x}+C.

Quicksort algorithm

105 47 13 17 30 222 5 19

5 17 13 47 30 222 105
19

5 17 30 222 105

13 47

105 222

9

Quicksort algorithm

105 47 13 17 30 222 5 19

5 17 13 47 30 222 105
19

5 17 30 222 105

13 47

In practice, insertion sort is used once the arrays
get “small enough”.

105 222

Doing quicksort in place

85 24 63 50 17 31 96 45

85 24 63 45 17 31 96 50

L R

85 24 63 45 17 31 96 50

L R

31 24 63 45 17 85 96 50

L R

Doing quicksort in place

31 24 63 45 17 85 96 50

L R

31 24 17 45 63 85 96 50

R L

31 24 17 45 50 85 96 63

31 24 17 45 63 85 96 50

L R

Quicksort is fast but hard to do

§ Quicksort, in the early 1960’s, was
famous for being incorrectly
implemented many times.
ØMore about invariants next time.

§ Quicksort is very fast in practice.
ØFaster than mergesort because

Quicksort can be done “in place”.

Informal analysis

§ If there are duplicate elements, then
algorithm does not specify which
subarray B or C should get them.
ØIdeally, split down the middle.

§ Also, not specified how to choose the
pivot.
ØIdeally, the median value of the array,

but this would be expensive to compute.
§ As a result, it is possible that

Quicksort will show O(N2) behavior.

Worst-case behavior

105 47 13 17 30 222 5 19
5

47 13 17 30 222 19 105

47 105 17 30 222 19

13

17

47 105 19 30 222
19

10

Analysis of quicksort

§ Assume random pivot.
ØT(0) = 1
ØT(1) = 1
ØT(N) = T(i) + T(N-i-1) + cN, for N>1

• where I is the size of the left subarray.

Worst-case analysis

§ If the pivot is always the smallest
element, then:
ØT(0) = 1
ØT(1) = 1
ØT(N) = T(0) + T(N-1) + cN, for N>1
Ø ≅ T(N-1) + cN
Ø = O(N2)

§ See the book for details on this
solution.

Best-case analysis

§ In the best case, the pivot is always
the median element.

§ In that case, the splits are always
“down the middle”.

§ Hence, same behavior as mergesort.

§ That is, O(Nlog N).

Average-case analysis

§ Consider the quicksort tree:

105 47 13 17 30 222 5 19

5 17 13 47 30 222 105
19

5 17 30 222 105

13 47

105 222

Average-case analysis

§ The time spent at each level of the
tree is O(N).

§ So, on average, how many levels?
ØThat is, what is the expected height of

the tree?
ØIf on average there are O(log N) levels,

then quicksort is O(Nlog N) on average.

Summary of quicksort

§ A fast sorting algorithm in practice.

§ Can be implemented in-place.

§ But is O(N2) in the worst case.

§ Average-case performance?

