
1

15-211
Fundamental Structures
of Computer Science

February 20, 2003

Ananda Guna

Introduction to Sorting

Announcements

§ Homework #4 is available
ØDue on Monday, March 17, 11:59pm
ØGet started now!

§ Quiz #2
Ø Available on Tuesday, Feb.25
Ø Some questions will be easier if you have 

some parts of HW4 working

§ Read
ØChapter 8

History

History of sorting from Knuth's book:

Hollerith's sorting machine developed in 
1901-1904 used radix sort. 
Card sorter: electrical connection with 
vat of mercury made through holes.  First 
the 0s pop out, then 1s, etc. 
For 2-column numerical data would sort of 
units column first, then re-insert into
machine and sort by tens column.

History Ctd…

From NIST web site:
Hollerith's system-including punch, tabulator, and 
sorter-allowed the official 1890 population count to be 
tallied in six months, and in another two years all the 
census data was completed and defined; the cost was $5 
million below the forecasts and saved more than two 
years‘time.
His later machines mechanized the card-feeding process, 
added numbers, and sorted cards, in addition to merely 
counting data.
In 1896 Hollerith founded the Tabulating Machine 
Company, forerunner of Computer Tabulating Recording 
Company (CTR). He served as a consulting engineer with 
CTR until retiring in 1921.

In 1924 CTR changed its name to IBM- the International 
Business Machines Corporation.

Comparison-based sorting

We assume

• Items are stored in an array. 

• Can be moved around in the array. 

• Can compare any two array 
elements.

Comparison has 3 possible outcomes:

<    =    > 

Flips and inversions

An unsorted array. 

24 47 13 99 105 222

inversion
flip

Two elements are inverted if A[i] > A[j] for i < j
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Insertion sort

105 47 13 99 30 222

47 105 13 99 30 222

13 47 105 99 30 222

13 47 99 105 30 222

13 30 47 99 105 222

105 47 13 99 30 222

Insertion sort

for  i = 1  to  n-1  do

insert a[i] in the proper place 

in  a[0:i-1]

So sub-array A[0..k-1] is sorted 
for k = 1,.,n  after k-1 steps

Proof using loop invariants

§ Proof is left as an exercise. Argue the correctness 
of the algorithm by proving that the loop 
invariants hold and then draw conclusions from 
what this implies upon termination of the loops. 

for  i = 1  to  n -1  do {

Invariant 1: A[0..i-1] is a sorted permutation of the original A[1..i-1]
j = i-1; key = A[i];    

while (j >= 0 && A[j]>key)

{   Invariant 2: A[j .. i-1] are all larger than the  key 
A[j+1] = A[j-- ] ; 

}

A[j] = key;

} 

Analysis of Insertion Sort

§ In the ith step we do at least 1 
comparison, at most (i-1) comparisons 
and on average i/2 (call this Ci) 
§ Mi – the number of moves at the ith step is 

C i_+ 2
§ Obtain formulas for Cmin, C ave, Cmax and 

same for Mmin, Mave, Mmax

§ Exercise
§ When is the worst case true? Best case 

true? What type of data sets?

How fast is insertion sort?

•Each step of the insertion sort we 
are reducing the number of 
inversions.

•Takes O(#inversions + N) steps, 
which is very fast if array is nearly 
sorted to begin with. I.e no 
inversions. 

•We can slightly increase the 
performance by doing binary 
insertion

How long does it take to sort?

§ Can we do better than  O(n2)?
ØIn the worst case?
ØIn the average case
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Heapsort

§ Remember heaps:
ØbuildHeap has O(n) worst-case running 

time. That is Σ 2i(h-i) = O(n)
ØdeleteMin has O(log n) worst-case 

running time. So n deleteMin’s would 
give a sorted list.

§ Heapsort:
ØBuild heap. O(n)
ØDeleteMin until empty.  O(n log n)
ØTotal worst case:        O(n log n)

N2 vs Nlog N

N^2
Nlog N

Sorting in O(n log n)

§ Heapsort establishes the fact that 
sorting can be accomplished in     
O(n log n) worst-case running time.

§ In fact, later we will see that it is 
possible to prove that any sorting 
algorithm will have require at least 
O(n log n) in the worst case.

Heapsort in practice

§ The average-case analysis for 
heapsort is somewhat complex.

§ In practice, heapsort consistently 
tends to use nearly n log n
comparisons. What if the array is 
sorted? What is the performance?

§ So, while the worst case is better 
than n2, other algorithms sometimes 
work better.

Shellsort

z A refinement of insertion sort 
proposed by D.L.Shell in 1959
zDefine k-sort as a process that 
sorts items that are k positions apart.
zSo one can do a series of k-sorts to 
achieve a relatively few movements 
of data.
zA 1-sort is really the insertion sort. 
But then most items are in place.

Shell Sort algorithm

105 47 13 17 30 222 5 19

After 4-sort 30 47 5 17 105 222 13 19

5 17 13 19 30 47 105 222

original

After 2-sort

5 13 17 19 30 47 105 222After 1-sort
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Shell Sort Analysis

§ Each pass benefit from previous
ØEach i-sort combines two groups sorted 

in previous 2i-sort.

§ Any sequence of increments 
(h1,h2,…) are fine as long as last one 
is 1.
Øht = 1, hi+1 < hi

ØEach h-sort is an insertion sort

§ Very difficult mathematical analysis

Shell Sort Analysis ctd..

§ It is shown that for the sequence 
1,3,7,15,31,… given by 
Øht=1, hk-1=2hk+1 and t = logn –1
ØFor this sequence, Shell Sort Algorithm 

is O(n1.2)
ØProof available but difficult. Ignore till 

15-451.

Recursive sorting

§ If array is length 1, then done.

§ If array is length N>1, then split in 
half and sort each half.
ØThen combine the results.

Divide-and-conquer

Divide-and-conquer is big

§ We will see several examples of 
divide-and-conquer in this course.

Analysis of recursive sorting

§ Let T(n) be the time required to sort 
n elements.

§ Suppose also it takes time n to 
combine the two sorted arrays.

§ Then:
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Recurrence relation

§ Then such “recursive sorting” is 
characterized by the following 
recurrence relation:

ØT(1) = 1
ØT(n) = 2 T(n/2) + n

A solution

§ A solution for
ØT(1) = 1
ØT(N) = 2T(N/2) + N

§ is given by
ØT(N) = Nlog N + N

Øwhich is O(Nlog N).

§ How to solve such equations?

Exact solutions

§ It is sometimes possible to derive 
closed-form solutions to recurrence 
relations.

§ Several methods exist for doing this.

Repeated substitution method

§ One technique is to use repeated 
substitution.
ØT(N) = 2T(N/2) + N
Ø2T(N/2) = 2(2T(N/4) + N/2)
Ø = 4T(N/4) + N
ØT(N) = 4T(N/4) + 2N
Ø4T(N/4) = 4(2T(N/8) + N/4)
Ø = 8T(N/8) + N
ØT(N) = 8T(N/8) + 3N
ØT(N) = 2kT(N/2k) + kN

Repeated substitution, cont’d

§ We end up with
ØT(N) = 2kT(N/2k) + kN,   for all k>1

§ Let’s use k=log N.
ØNote that 2log N = N.

§ So:
ØT(N) = NT(1) + Nlog N
Ø = Nlog N + N

Mergesort

§ Mergesort is the most basic recursive 
sorting algorithm.
ØDivide array in halves A and B.
ØRecursively mergesort each half.
ØCombine A and B by successively 

looking at the first elements of A and B 
and moving the smaller one to the 
result array.

§ Note: Should be a careful to avoid 
creating of lots of result arrays.
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Mergesort Mergesort

But 
don’t 
actually 
want to 
create 
all of 
these 
arrays!

Mergesort

L LR L

Use simple indexes to perform the split.

Use a single extra array to hold each 
intermediate result.

Analysis of mergesort

§ Mergesort generates almost exactly 
the same recurrence relations shown 
before.
ØT(1) = 1
ØT(N) = 2T(N/2) + N - 1,  for N>1

§ Thus, mergesort is O(Nlog N).

Upper bounds for rec. relations

§ Divide-and-conquer algorithms are 
very useful in practice.

§ Furthermore, they all tend to generate 
similar recurrence relations.

§ As a result, approximate upper-bound 
solutions are well-known for 
recurrence relations derived from 
divide-and-conquer algorithms.

Divide-and-Conquer Theorem

§ Theorem:  Let a, b, c ≥ 0.
§ The recurrence relation
ØT(1) = b
ØT(N) = aT(N/c) + bN
Øfor any N which is a power of c

§ has upper-bound solutions
ØT(N) = O(N) if a<c
ØT(N) = O(Nlog N) if a=c
ØT(N) = O(Nlogca) if a>c

a=2, b=1,
c=2 for rec.
sorting
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Upper-bounds

§ Corollary:

§ Dividing a problem into p pieces, 
each of size N/p, using only a linear 
amount of work, results in an 
O(Nlog N) algorithm.

Upper-bounds

§ Proof of this theorem later in the 
semester.

Checking a solution

§ It is also useful sometimes to check 
that a solution is valid.

ØThis can be done by induction.

Checking a solution

§ Base case:
ØT(1) = 1log 1 + 1 = 1

§ Inductive case:
ØAssume T(M) = Mlog M + M,  all M<N.
ØT(N) = 2T(N/2) + N

Checking a solution

§ Base case:
ØT(1) = 1log 1 + 1 = 1

§ Inductive case:
ØAssume T(M) = Mlog M + M,  all M<N.
ØT(N) = 2T(N/2) + N

Checking a solution

§ Base case:
ØT(1) = 1log 1 + 1 = 1

§ Inductive case:
ØAssume T(M) = Mlog M + M,  all M<N.
ØT(N) = 2T(N/2) + N
Ø = 2((N/2)(log(N/2))+N/2)+N
Ø = N(log N - log 2)+2N
Ø = Nlog N - N + 2N
Ø = Nlog N + N
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Quicksort

§ Quicksort was invented in 1960 by 
Tony Hoare.

§ Although it has O(N2) worst-case 
performance, on average it is 
O(Nlog N).

§ More importantly, it is the fastest 
known comparison-based sorting 
algorithm in practice.

Quicksort idea

§ Choose a pivot.

Quicksort idea

§ Choose a pivot.

§ Rearrange so that 
pivot is in the 
“right” spot.

Quicksort idea

§ Choose a pivot.

§ Rearrange so that 
pivot is in the 
“right” spot.

§ Recurse on each 
half and conquer!

Quicksort algorithm

§ If array A has 1 (or 0) elements, 
then done.
§ Choose a pivot element x from A.
§ Divide A-{x} into two arrays:
ØB = {y∈A | y≤x}
ØC = {y∈A | y≥x}

§ Quicksort arrays B and C.
§ Result is B+{x}+C.

Quicksort algorithm

105 47 13 17 30 222 5 19

5 17 13 47 30 222 105
19

5 17 30 222 105

13 47

105 222
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Quicksort algorithm

105 47 13 17 30 222 5 19

5 17 13 47 30 222 105
19

5 17 30 222 105

13 47

In practice, insertion sort is used once the arrays 
get “small enough”.

105 222

Doing quicksort in place

85    24    63    50    17    31    96    45

85 24    63    45    17    31    96 50

L R

85 24    63    45    17    31 96    50

L R

31 24    63    45    17    85 96    50

L R

Doing quicksort in place

31    24    63 45    17 85    96    50

L R

31    24    17    45    63 85    96    50

R L

31    24    17    45    50 85    96    63

31    24    17 45    63 85    96    50

L R

Quicksort is fast but hard to do

§ Quicksort, in the early 1960’s, was 
famous for being incorrectly 
implemented many times.
ØMore about invariants next time.

§ Quicksort is very fast in practice.
ØFaster than mergesort because 

Quicksort can be done “in place”.

Informal analysis

§ If there are duplicate elements, then 
algorithm does not specify which 
subarray B or C should get them.
ØIdeally, split down the middle.

§ Also, not specified how to choose the 
pivot.
ØIdeally, the median value of the array, 

but this would be expensive to compute.
§ As a result, it is possible that 

Quicksort will show O(N2) behavior.

Worst-case behavior

105 47 13 17 30 222 5 19
5

47 13 17 30 222 19 105

47 105 17 30 222 19

13

17

47 105 19 30 222
19
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Analysis of quicksort

§ Assume random pivot.
ØT(0) = 1
ØT(1) = 1
ØT(N) = T(i) + T(N-i-1) + cN,  for N>1

• where I is the size of the left subarray.

Worst-case analysis

§ If the pivot is always the smallest 
element, then:
ØT(0) = 1
ØT(1) = 1
ØT(N) = T(0) + T(N-1) + cN,  for N>1
Ø ≅ T(N-1) + cN
Ø = O(N2)

§ See the book for details on this 
solution.

Best-case analysis

§ In the best case, the pivot is always 
the median element.

§ In that case, the splits are always 
“down the middle”.

§ Hence, same behavior as mergesort.

§ That is, O(Nlog N).

Average-case analysis

§ Consider the quicksort tree:

105 47 13 17 30 222 5 19

5 17 13 47 30 222 105
19

5 17 30 222 105

13 47

105 222

Average-case analysis

§ The time spent at each level of the 
tree is O(N).

§ So, on average, how many levels?
ØThat is, what is the expected height of 

the tree?
ØIf on average there are O(log N) levels, 

then quicksort is O(Nlog N) on average.

Summary of quicksort

§ A fast sorting algorithm in practice.

§ Can be implemented in-place.

§ But is O(N2) in the worst case.

§ Average-case performance?


