
1

15-211
Fundamental Data Structures and
Algorithms

Ananda Guna
February 04, 2003

Priority Queues and Heaps

Based on lectures given by Peter Lee, Avrim Blum, Danny Sleator, William Scherlis ,
Ananda Guna & Klaus Sutner

Definition of Priority Queue

Definition: An abstract data type to
efficiently support finding the item
with the highest priority across a
series of operations. The basic
operations are: insert, find-minimum
(or maximum), and delete-minimum
(or maximum).

Priority Queue

§ P-queue is a data structure that allows:
Ø Insertion and deleteMin in O(logn)
Ø O(1) findMin operation

§ Applications
Ø Operating System Design – resource allocation
Ø Data Compression -Huffman algorithm
Ø Discrete Event simulation

• 1) Insertion of time-tagged events (time represents
a priority of an event -- low time means high
priority)

• (2) Removal of the event with the smallest time tag

§ Implementation
Ø Linked Lists
Ø Using a binary Heap – a special binary tree with heap

property

Priority queue Operations

§ new
ØCreate a new priority queue.

§ insertItem(x)
ØInsert object x into the p-queue.

§ minElement()
ØReturn the minimum element from the

p-queue.

§ removeMin()
ØReturn and remove the minimum

element from the p-queue.

Some questions

§ How do we ensure that there is a
concept of a “minimum”?

§ What should happen in minElement()
and removeMin() if the priority
queue is empty?

§ How long does it take to perform
operations like insertItem(x) and
removeMin()?

Comparing Objects

2

Comparing objects

§ In Java, objects can be compared for
equality:

public void doSomething (Person x, Person y) {
…
if (x == y) { … }
…

}

What does it mean for two objects
to be equal?

Comparing objects

§ Note that this is an issue only for
objects.

§ Values of base type (such as int,
float, char, etc.) have built-in
comparison operations ==, <, <=, …

§ But javac can’t possibly know how to
compare objects.

ØE.g., Is a>b where a and b are objects

The Comparable interface

§ Suppose we want to put objects of
class Person into our priority queue.
§ What we can do is require that every

Person object has a method that
computes whether it is bigger,
smaller, or equal to another Person
object.
§ The JDK has a built-in interface just

for this purpose, called Comparable.

The Comparable interface

public interface Comparable {
public int compareTo (Object obj);

}

Returns <0 if object is less than obj,
=0 if object is equal to obj,
>0 if object is greater than obj.

The Comparable interface

public class Person implements Comparable {
…

}

…
Person a = new Person(“Klaus”);
Person b = new Person(“Peter”);

if (a.compareTo(b)) { … }
…

A caution

§ Note that the compareTo() method
takes any object (not just Person
objects, for example).

§ If a comparison makes no sense at
all, then by convention the exception
ClassCastException is raised.

Gorilla a = new Gorilla (“Freddy”);
Person b = new Person (“Matt”);

if (a.compareTo(b)) { … }
…

3

Exceptional Conditions

Some questions

§ How do we ensure that there is a
concept of a “minimum”?

§ What should happen in minElement()
and removeMin() if the priority
queue is empty?

§ How long does it take to perform
operations like insertItem(x) and
removeMin()?

One possibility

§ If removeMin() is applied to an
empty priority queue, it could return
null.

ØPro: Simple.

ØCon: May require that all calls to
removeMin() check for null.

An alternative

§ A common approach is to raise an
exception.

public class PriorityQueue {
…

public int removeMin() throws
PriorityQueueEmptyException {
…
if (isEmpty())

throw new PriorityQueueException(
“Empty priority queue in removeMin()”);

…
…

}

Exception classes

public class PriorityQueueException
extends Exception {

public PriorityQueueException() {
super();

}

public PriorityQueueException(String s) {
super(s);

}
}

More on this later…

Implementation p-queue

4

Using Binary Trees

§ We expect the find and insert
operations to take O(log N) time.
§ In fact, operations like find take time

d, where d is the depth of the item
in the tree.
§ Since the depth is not expected to

be larger than log(N), and each step
down the tree requires constant
time, we get O(log N). More later..

Analysis of BSTs

§ If all insertion sequences are equally
likely (that is, the insertion order is
random), then on average a binary
search tree has depth O(log2(N)).
§ Define D(N) to be the sum of the

depths of all nodes in a tree with N
nodes.
ØD(1) = 0.

Analysis, cont’d

§ For a tree with N>1 nodes:
Øi nodes in left subtree,
ØN-i-1 nodes in the right subtree,
Øand one node at root. (for 0<=i<N)

§ So,
ØD(N) = D(i) + D(N-i-1) + N - 1

§ The average value of D(i) and D(N-i-1) is

§ So, D(N) =

Analysis, cont’d

Analysis, cont’d

§ There are methods for solving such
recurrence equations.

§ We shall see later that this equation
has the solution O(N×logN).

§ Thus, on average the depth of any
particular node is O(log N).

Priority queue implementation

§ Linked list
ØremoveMinO(1) O(N)
ØinsertItem O(N) O(1)

§ Heaps avg worst

ØdeleteMin O(log N) O(log N)
Øinsert 2.6 O(log N)

special case:

Øbuild O(N) O(N)
i.e., insert*N

or

5

Heaps

§ A binary tree.
§ Representation invariant

1. Structure property
• Complete binary tree

2. Heap order property
• Parent keys less than children keys

Heaps

§ Representation invariant
1. Structure property

• Complete binary tree
• Hence: efficient compact representation

2. Heap order property
• Parent keys less than children keys

• Hence: rapid insert, findMin, and deleteMin
• O(log(N)) for insert and deleteMin
• O(1) for findMin

Perfect binary trees

13

2665

24

32

16

2665 266526

6819

21

31

Perfect binary trees

§ How many nodes?
ØN = 24 - 1 = 15

Ø In general: N = Σ0≤i≤h 2 i = 2h+1 - 1

ØMost of the nodes are leaves

13

2665

24

32

16

2665 266526

6819

21

31

h=3

How
many
edges?

Perfect binary trees

§ What is the sum of the heights?

S =Σ0≤i≤h 2i(h-i) = O(N) prove this

13

2665

24

32

16

2665 266526

6819

21

31

h=3
N=15

How
many
edges?
N-1

Complete binary trees

21

13

2665

24

32

31 6819

16

6

Complete binary trees

2

1

98

4

10

5 76

3

Representing complete binary trees

§ Linked structures? No!
§ Arrays!

2

1

98

4

10

5 76

3

Representing complete binary trees

§ Arrays
ØParent at position i
ØChildren at 2i and 2i+1.

2

1

98

4

10

5 76

3

Representing complete binary trees

§ Arrays (1-based)
ØParent at position i
ØChildren at 2i and 2i+1.

2

1

98

4

10

5 76

3

1 2 3 4 5 6 7 8 9 10

Representing complete binary trees

§ Arrays (1-based)
ØParent at position i
ØChildren at 2i and 2i+1.

2

1

98

4

10

5 76

3

1 2 3 4 5 6 7 8 9 10

Representing complete binary trees

§ Arrays (1-based)
ØParent at position i
ØChildren at 2i (and 2i+1).

2

1

98

4

10

5 76

3

1 2 3 4 5 6 7 8 9 10

7

Representing complete binary trees

§ Arrays (1-based)
ØParent at position i
ØChildren at 2i and 2i+1.

public class BinaryHeap {
private Comparable[] heap;
private int size;
public BinaryHeap(int capacity) {

size=0;
heap = new Comparable[capacity+1];

}
. . .

Representing complete binary trees

§ Arrays
Ø Parent at position i
Ø Children at 2i and 2i+1.

§ Example: find the leftmost child
int left=1;
for(; left<size; left*=2);
return heap[left/2];

§ Example: find the rightmost child
int right=1;
for(; right<size; right=right*2+1);
return heap[(right-1)/2];

Heaps

§ Representation invariant
1. Structure property

• Complete binary tree
• Hence: efficient compact representation

2. Heap order property
• Parent keys less than children keys

• Hence: rapid insert, findMin, and deleteMin
• O(log(N)) for insert and deleteMin
• O(1) for findMin

The heap order property

§ Each parent is less than each of its
children.

§ Hence: Root is less than every other
node.
Ø Proof by induction

13

2665

24

32

31 6819

1621

The heap order property

§ Each parent is less than each of its
children.

§ Hence: Root is less than every other
node.
Ø Proof by induction

13

2665

24

32

31 6819

16

13

2665

24

32

31 6821

19

13

6865

32

31

26 2119

1621 16 24

Operating with heaps

Representation invariant:
§ All methods must:

1. Produce complete binary trees
2. Guarantee the heap order property

§ All methods may assume
1. The tree is initially complete binary
2. The heap order property holds

8

findMin ()

§ The code
public boolean isEmpty() {

return size == 0;
}

public Comparable findMin() {
if(isEmpty()) return null;
return heap[1];
}

§ Does not change the tree
ØTrivially preserves the invariant

insert (Comparable x)

§ Process
1. Create a “hole” at the next tree cell for x.

heap[size+1]
This preserves the completeness of the tree.

2. Percolate the hole up the tree until the
heap order property is satisfied.
This assures the heap order property is satisfied.

insert (Comparable x)

§ Process
1. Create a “hole” at the next tree cell for x.

heap[size+1]
This preserves the completeness of the tree
assuming it was complete to begin with.

2. Percolate the hole up the tree until the
heap order property is satisfied.
This assures the heap order property is
satisfied assuming it held at the outset .

Percolation up

public void insert(Comparable x)
throws Overflow
{

if(isFull()) throw new Overflow();
int hole = ++size;
for(;

hole>1 && x.compareTo(heap[hole/2])<0;
hole/=2)

heap[hole] = heap[hole/2];
heap[hole] = x;
}

Percolation up

§ Bubble the hole up the tree until the
heap order property is satisfied.

hole = 11
HOP false

13

2665

24

32

31 6819

16

14 Not really there...

21

Percolation up

§ Bubble the hole up the tree until the heap
order property is satisfied.

hole = 11 hole = 5
HOP false HOP false

13

2665

24

32

31 6819

16

14

13

2665

24

32

14 6819

16

31

2121

9

Percolation up

§ Bubble the hole up the tree until the heap
order property is satisfied.

hole = 5 hole = 2
HOP false HOP true done

13

2665

24

32

21 6819

16

31

13

2665

24

32

14 6819

16

31

1421

deleteMin()

/**
* Remove the smallest item from the priority queue.
* @return the smallest item, or null, if empty.
*/
public Comparable deleteMin()
{

if(isEmpty()) return null;
Comparable min = heap[1];
heap[1] = heap[size--];
percolateDown(1);
return min;

}

Temporarily
place last

element at top

Grab min
element

!!!

Percolation down

§ Bubble the transplanted leaf value down
the tree until the heap order property is
satisfied.

14

31

2665

24

32

21 6819

1614

--

2665

24

32

21 6819

16

31

1 2

Percolation down

§ Bubble the transplanted leaf value down
the tree until the heap order property is
satisfied.

31

14

2665

24

32

21 6819

1614

31

2665

24

32

21 6819

16

2 3

Percolation down

§ Bubble the transplanted leaf value down
the tree until the heap order property is
satisfied.

21

14

2665

24

32

31 6819

1631

14

2665

24

32

21 6819

16

3 4 done

deleteMin ()

§ Observe that both components of
the representation invariant are
preserved by deleteMin.
1. Completeness

• The last cell (heap[size]) is vacated,
providing the value to percolate down.

• This assures that the tree remains
complete.

2. Heap order property

10

deleteMin ()

§ Observe that both components of
the representation invariant are
preserved by deleteMin.
1. Completeness

• The last cell (heap[size]) is vacated,
providing the value to percolate down.

• This assures that the tree remains
complete.

2. Heap order property

deleteMin ()

§ Observe that both components of
the representation invariant are
preserved by deleteMin.
1. Completeness

• The last cell (heap[size]) is vacated,
providing the value to percolate down.

• This assures that the tree remains
complete.

2. Heap order property
• The percolation algorithm assures that the

orphaned value is relocated to a suitable
position .

buildHeap

§ Equivalent to a sequence of inserts
for(int i=0;i<N;i++)

insert(input[i]);

§ Two steps:
1. Fill the array (in no particular order).
2. percolateDown, bottom up.
for(int i=size/2; i>0; i--)

percolateDown(i);
Ø This does a linear number of comparisons

Thursday

§ We will talk about Greedy Algorithms
§ Read Chapter 7
§ HW3 is online now
ØYou must read homework

assignment before recitation
tomorrow

§ Start Early
§ Ask Questions Early
§ Go to Recitation Tomorrow

