Wednesday, Dec 02, 2020. 03:00 PM - 04:00 PM ETLink to Zoom for Online Seminar.
Vincent Conitzer -- Automated Mechanism Design for Strategic Classification
Abstract: AI is increasingly making decisions, not only for us, but also about us -- from whether we are invited for an interview, to whether we are proposed as a match for someone looking for a date, to whether we are released on bail. Often, we have some control over the information that is available to the algorithm; we can self-report some information, and other information we can choose to withhold. This creates a potential circularity: the classifier used, mapping submitted information to outcomes, depends on the (training) data that people provide, but the (test) data depend on the classifier, because people will reveal their information strategically to obtain a more favorable outcome. This setting is not adversarial, but it is also not fully cooperative.
Mechanism design provides a framework for making good decisions based on strategically reported information, and it is commonly applied to the design of auctions and matching mechanisms. However, the setting above is unlike these common applications, because in it, preferences tend to be similar across agents, but agents are restricted in what they can report. This creates both new challenges and new opportunities. I will discuss both our theoretical work and our initial experiments.
Bio: Vincent Conitzer is the Kimberly J. Jenkins University Professor of New Technologies and Professor of Computer Science, Professor of Economics, and Professor of Philosophy at Duke University. He received Ph.D. (2006) and M.S. (2003) degrees in Computer Science from Carnegie Mellon University, and an A.B. (2001) degree in Applied Mathematics from Harvard University. Conitzer works on artificial intelligence (AI). Much of his work has focused on AI and game theory, for example designing algorithms for the optimal strategic placement of defensive resources. More recently, he has started to work on AI and ethics: how should we determine the objectives that AI systems pursue, when these objectives have complex effects on various stakeholders?
Conitzer has received the Social Choice and Welfare Prize, a Presidential Early Career Award for Scientists and Engineers (PECASE), the IJCAI Computers and Thought Award, an honorable mention for the ACM dissertation award, and several awards for papers and service at the AAAI and AAMAS conferences. He has also been named a Guggenheim Fellow, a Sloan Fellow, a Kavli Fellow, a Bass Fellow, an ACM Fellow, a AAAI Fellow, and one of AI's Ten to Watch. He has served as program and/or general chair of the AAAI, AAMAS, AIES, COMSOC, and EC conferences. Conitzer and Preston McAfee were the founding Editors-in-Chief of the ACM Transactions on Economics and Computation (TEAC).